Base Cation Depletion and Potential Long-Term Acidification of Norwegian Catchments

1995 ◽  
Vol 29 (8) ◽  
pp. 1953-1960 ◽  
Author(s):  
James W. Kirchner ◽  
Espen. Lydersen
2008 ◽  
Vol 155 (2) ◽  
pp. 336-349 ◽  
Author(s):  
Paul Horswill ◽  
Odhran O'Sullivan ◽  
Gareth K. Phoenix ◽  
John A. Lee ◽  
Jonathan R. Leake

1997 ◽  
Vol 1 (3) ◽  
pp. 571-581 ◽  
Author(s):  
B. Reynolds ◽  
M. Renshaw ◽  
T. H. Sparks ◽  
S. Crane ◽  
S. Hughes ◽  
...  

Abstract. Stream water chemistry in the Cyff and Gwy subcatchments within the headwaters of the River Wye has been monitored regularly since 1980. In the Gwy, which is a predominantly semi-natural grassland catchment, land use has remained relatively static over the monitoring period, whilst the Cyff catchment is more buffered because of base cation inputs from agricultural improvement and ground water sources. Using a variety of statistical techniques, the long-term data are examined for evidence of trends after eliminating seasonal effects. The results highlight some of the difficulties associated with the analysis of longterm water quality data which show considerable variability over a variety of timescales. Some of this variability can be explained in terms of hydrochemical responses to climatic extremes and episodic events such as large atmospheric inputs of seasalts. The long-term fluctuations in solute concentration underline the continuing need for maintaining consistent long-term monitoring at sensitive upland sites if underlying trends related to gradual changes in pollutant deposition or climate are to be detected with any certainty.


Ecosystems ◽  
2013 ◽  
Vol 16 (5) ◽  
pp. 707-721 ◽  
Author(s):  
Richard W. Lucas ◽  
Ryan A. Sponseller ◽  
Hjalmar Laudon

2019 ◽  
Vol 70 (1) ◽  
pp. 34-38 ◽  
Author(s):  
Wojciech Stępień ◽  
Monika Kobiałka

Abstract The research was carried out continuously since 1923 in a permanent fertilisation experiment at the Experimental Station of SGGW in Skierniewice. The objective of the research was to determine the effect of long-term fertilisation (Ca, CaNPK, NPK) and crop rotation systems (rye monoculture without fertilisation with manure and five-field rotation with legume crop and manure fertilisation) on selected physical and chemical soil properties. Long-term fertilisation caused various degrees of change in many physio-chemical properties in three soil horizons (Ap, Eet, Bt): pH in KCl, cation exchange capacity, total exchangeable bases, base saturation, content of carbon, nitrogen and mineral forms of nitrogen (NO3, NH4) as well as the carbon-nitrogen ratio. The combined manure and mineral fertilisation increased the sorption capacity, total exchangeable bases, base cation saturation and total content of C and N in comparison to organic or mineral fertilisation. As a result of lime application, an increase in these parameters was determined with the exception of total contents of carbon and nitrogen, showing no differences or a decrease. A positive effect was confirmed in five-field crop rotation, which improves physicochemical soil properties in comparison to cereal monoculture. The C:N ratio narrows down with growing depth because more nitrogen than carbon migrates down the soil profile.


2020 ◽  
Author(s):  
Elin Jutebring Sterte ◽  
Fredrik Lidman ◽  
Emma Lindborg ◽  
Ylva Sjöberg ◽  
Hjalmar Laudon

Abstract. Understanding travel times of rain and snowmelt inputs transported through the subsurface environment to recipient surface waters is critical in many hydrological and biogeochemical investigations. In this study, a particle tracking model approach in Mike SHE was used to investigating the travel time of stream groundwater input to 14 partly nested, long-term monitored boreal sub-catchments. Based on previous studies in the area, we hypothesized that the main factor controlling groundwater travel times was catchment size. The modeled mean travel time (MTT) in the different sub-catchments ranged between 0.5 years and 3.6 years. Estimated MTTs were tested against the observed long-term winter isotopic signature (δ2H, δ18O) and chemistry (base cation concentration and pH) of the stream water. The underlying assumption was that older water would have an isotopic signature that resembles the long-term average precipitation input, while seasonal variations would be more apparent in catchments with younger water. Similarly, it was assumed that older water would be more affected by weathering, resulting in higher concentrations of base cations and higher pH. 10-year average winter values for stream chemistry were used for each sub-catchment. We found significant correlations between the estimated travel times and average water isotope signature (r = 0.80, p 


2010 ◽  
Vol 69 (1s) ◽  
pp. 181 ◽  
Author(s):  
Mina NASR ◽  
Mark CASTONGUAY ◽  
Jae OGILVIE ◽  
Beverley A. RAYMOND† ◽  
Paul A. ARP

Geoderma ◽  
2015 ◽  
Vol 247-248 ◽  
pp. 12-23 ◽  
Author(s):  
Fougère Augustin ◽  
Daniel Houle ◽  
Christian Gagnon ◽  
François Courchesne

2015 ◽  
Vol 45 (4) ◽  
pp. 487-495
Author(s):  
Chloé McMillan ◽  
Benoît Côté ◽  
William H. Hendershot

The short-term (1–3 years) and long-term (23 years) effects of liming combined with potassium (K) fertilization on forest nutrition and K cycling were examined in a sugar maple (Acer saccharum Marsh.) stand in southern Quebec. Sugar maple leaves were sampled annually from 1988 (prefertilization year) to 1991 and in 2011–2012. Ten understory plant species, sugar maple sapwood, and soils were also sampled in 2012 and analyzed for K, calcium (Ca), magnesium (Mg), and rubidium (Rb). The recovery of fertilizer K was determined using the Rb/K reverse tracer method. Fertilization neither increased growth nor maintained higher sugar maple leaf K levels over the long term; however, leaf K to Ca and K to Mg ratios were still higher in fertilized plots than in control plots in 2012. The percentage of leaf K derived from fertilizer peaked 3 years after fertilization (36% ± 5%) and was down to 1989 levels by 2012 (15% ± 6%). Understory vegetation generally showed no differences in leaf K concentration between treatments, but percent K from fertilizers was greater than 25% in several species. There was no significant effect of fertilization on soil K, Ca, and Mg availability by 2012. Our results suggest that significant amounts of fertilizer K are still present on the site after 23 years but that base cation levels in leaves and upper soil horizons have returned to near prefertilization levels except for a slight enrichment in K. Although small, the effects of fertilization with liming on soil fertility and plant nutrient status in a maple stand can be long lasting.


2019 ◽  
Vol 16 (22) ◽  
pp. 4429-4450 ◽  
Author(s):  
Cecilia Akselsson ◽  
Salim Belyazid ◽  
Johan Stendahl ◽  
Roger Finlay ◽  
Bengt A. Olsson ◽  
...  

Abstract. Soil and water acidification was internationally recognised as a severe environmental problem in the late 1960s. The interest in establishing “critical loads” led to a peak in weathering research in the 1980s and 1990s, since base cation weathering is the long-term counterbalance to acidification pressure. Assessments of weathering rates and associated uncertainties have recently become an area of renewed research interest, this time due to demand for forest residues to provide renewable bioenergy. Increased demand for forest fuels increases the risk of depleting the soils of base cations produced in situ by weathering. This is the background to the research programme Quantifying Weathering Rates for Sustainable Forestry (QWARTS), which ran from 2012 to 2019. The programme involved research groups working at different scales, from laboratory experiments to modelling. The aims of this study were to (1) investigate the variation in published weathering rates of base cations from different approaches in Sweden, with consideration of the key uncertainties for each method; (2) assess the robustness of the results in relation to sustainable forestry; and (3) discuss the results in relation to new insights from the QWARTS programme and propose ways to further reduce uncertainties. In the study we found that the variation in estimated weathering rates at single-site level was large, but still most sites could be placed reliably in broader classes of weathering rates. At the regional level, the results from the different approaches were in general agreement. Comparisons with base cation losses after stem-only and whole-tree harvesting showed sites where whole-tree harvesting was clearly not sustainable and other sites where variation in weathering rates from different approaches obscured the overall balance. Clear imbalances appeared mainly after whole-tree harvesting in spruce forests in southern and central Sweden. Based on the research findings in the QWARTS programme, it was concluded that the PROFILE/ForSAFE family of models provides the most important fundamental understanding of the contribution of weathering to long-term availability of base cations to support forest growth. However, these approaches should be continually assessed against other approaches. Uncertainties in the model approaches can be further reduced, mainly by finding ways to reduce uncertainties in input data on soil texture and associated hydrological parameters but also by developing the models, e.g. to better represent biological feedbacks under the influence of climate change.


Sign in / Sign up

Export Citation Format

Share Document