whole tree
Recently Published Documents


TOTAL DOCUMENTS

533
(FIVE YEARS 89)

H-INDEX

46
(FIVE YEARS 4)

2022 ◽  
Vol 504 ◽  
pp. 119823
Author(s):  
C. Tattersall Smith ◽  
Christopher Preece ◽  
Inge Stupak ◽  
Russell D. Briggs ◽  
Bruna Barusco ◽  
...  

2021 ◽  
Vol 460 ◽  
pp. 109735
Author(s):  
Gunnar Petter ◽  
Holger Kreft ◽  
Yongzhi Ong ◽  
Gerhard Zotz ◽  
Juliano Sarmento Cabral

2021 ◽  
Vol 51 ◽  
Author(s):  
Natali De Oliveira Pitz ◽  
Jean Alberto Sampietro ◽  
Erasmo Luis Tonett ◽  
Luis Henrique Ferrari ◽  
Philipe Ricardo Casemiro Soares ◽  
...  

Background: Work studies are fundamental for the development and assessment of timber harvesting systems aimed at rationalising and improving forest management activities.   Methods: This study evaluated the operational performance of a mechanised whole-tree harvesting system in 32-year-old Pinus taeda L. stands producing multiple timber products. A time and motion study at the cycle element level was conducted to evaluate the operational performance of each component of the harvesting system. Equations were developed to estimate the productivity of tree extraction activity with a wheeled skidder and log loading with a mechanical loader. Results: Tree felling with an excavator-based harvester had the highest mean productivity (135 m3 per productive machine hour), followed by tree extraction with a wheeled skidder (117 m3 per productive machine hour), while manually processing larger logs with a chainsaw had the lowest productivity (25.7 m3 per productive machine hour). Operator, extraction distance and mean log volume had a significant effect on the performance of different activities and were included in productivity models. Conclusions: Operational performance of equipment was variable and dependent on the effect of the operator, extraction distance and log volume. Thus, the use of models to estimate productivity considering such factors, coupled with reduced delays to increase utilisation of equipment, will contribute to the better management and planning of forest harvesting operations under the evaluated conditions.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1389
Author(s):  
Anssi Ahtikoski ◽  
Juha Laitila ◽  
Anu Hilli ◽  
Marja-Leena Päätalo

Despite positive signals from increasing growing stock volumes and improved roundwood trade, first commercial thinnings (FCTs) tend to be a bottleneck in Finnish forest management and forestry. The reasons are many, but probably the most crucial would be the lack of simultaneous economic incentives for participating agents, i.e., private forest owners and forest machine contractors. This is due to poor stand characteristics in most FCT cases: low cutting removal with small average stem size. There are five predetermined management options: (1) Industrial wood thinning with only two timber assortments, pulpwood and saw logs, (2) Integrated procurement of industrial and energy wood, (3) Energy wood thinning solely consisting of delimbed stems, (4) Whole-tree energy wood thinning with an energy price of 3 € m−3 and (5) Whole-tree energy wood thinning with energy price of 8 € m−3, that were applied for six separate forest stands located in Northern Finland, and derived from a database representing stands with an urgent need for FCT. Then, a two-phase financial analysis consisting of stand-level optimization (private forest owners) and profitability assessment (contractor) was conducted in order to find out whether there would be simultaneous economic incentives for both participants of FCT. The stand-level optimization revealed the financially best management options for a private forest owner, and then, for a contractor, the profitability assessment exposed the profit (or loss) associated with the particular management option. In brief, our results demonstrated that conducting either an industrial wood thinning (1) or an integrated procurement (2) resulted in a positive economic incentive for both the private forest owner and the contractor in all six cases (stands). Further, applying energy wood thinning with delimbed stems (3) would even generate a financial loss for the contractor, given the roadside prices applied in this study


2021 ◽  
Author(s):  
Andrew Trlica ◽  
Rachel L Cook ◽  
Timothy J Albaugh ◽  
Rajan Parajuli ◽  
David R Carter ◽  
...  

Abstract Rising demand for renewable energy has created a potential market for biomass from short-rotation pine plantations in the southeastern United States. Site preparation, competition control, fertilization, and enhanced seedling genotypes offer the landowner several variables for managing productivity, but their combined effects on financial returns are unclear. This study estimated returns from a hypothetical 10-year biomass harvest in loblolly pine plantation using field studies in the Coastal Plain of North Carolina and the Virginia Piedmont testing combinations of tree genotype, planting density, and silviculture. Although enhanced varietal genotypes could yield more biomass, open-pollinated seedlings at 1,236–1,853 trees ha−1 under operational silviculture had the greatest returns at both sites, with mean whole-tree internal rates of return of 8.3%–9.9% assuming stumpage equal to current pulpwood prices. At a 5% discount rate, break-even whole-tree stumpage at the two sites in the optimal treatments was $8.72–$9.92 Mg−1, and break-even yield was 175–177 Mg ha−1 (roughly 18 Mg ha−1 yr−1 productivity), although stumpage and yield floors were higher if only stem biomass was treated as salable. Dedicated short-rotation loblolly biomass plantations in the region are more likely to be financially attractive when site establishment and maintenance costs are minimized. Study Implications: Our study suggests that dedicated loblolly pine plantations in the US Southeast may be managed to generate positive financial yields for biomass over relatively short (10 year) rotation windows, even at lower stumpage value than at present for pulpwood in the region (<80% current). Intensive use of costly inputs like fertilizer, vigorous chemical competition control, and elite genetics in planting stock did improve biomass yields. However, the management combinations that favored the highest financial returns emphasized the least expensive open-pollinated stock, lower-input operational silviculture, and moderate-to-high planting density.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1212
Author(s):  
Mohammad Reza Ghaffariyan ◽  
Eloïse Dupuis

Many parameters can influence the weight of harvesting residues per hectare that remain on plantation sites after extracting sawlogs and pulpwoods. This study aimed at quantifying the impact of the cut-to-length and whole-tree harvesting methods on the weight of harvesting residues using 26 case studies in Australian plantations. A database was created using case studies conducted in different plantations, to measure the weight of harvesting residues per hectare and the components of harvesting residues. An analysis of variance was applied to test the impact made by the harvesting methods. The results confirmed that the cut-to-length harvesting method produced a larger weight of residues (104.0 tonnes of wet matter per hectare (tWM/ha) without additional biomass recovery and 64.7 tWM/ha with additional biomass recovery after sawlog/pulpwood extraction) than the whole-tree harvesting method (12.5 tWM/ha). The fraction test showed that stem wood formed the largest proportion of the harvesting residues in cut-to-length sites and needles were the largest component of the pine harvesting residues in sites cleared by the whole-tree harvesting method. The outcomes of this study could assist plantation managers to set proper strategies for harvesting residues management. Future research could study the impact of product type, silvicultural regime, stand quality, age, equipment, etc., on the weight of harvesting residues.


2021 ◽  
Vol 496 ◽  
pp. 119382
Author(s):  
Han Zhao ◽  
Zaimin Jiang ◽  
Youjing Zhang ◽  
Bo Jiang ◽  
Jing Cai

Author(s):  
Giuliana Zanchi ◽  
Klas Lucander ◽  
Veronika Kronnäs ◽  
Martin Erlandsson Lampa ◽  
Cecilia Akselsson

AbstractThe study investigated the effects of forest residue extraction on tree growth and base cations concentrations in soil water under different climatic conditions in Sweden. For this purpose, the dynamic model ForSAFE was used to compare the effects of whole-tree harvesting and stem harvesting on tree biomass and the soil solution over time at 6 different forest sites. The study confirmed the results from experimental sites showing a temporary reduction of base cation concentration in the soil solution for a period of 20–30 years after whole-tree harvesting. The model showed that this was mainly caused by the reduced inputs of organic material after residue extraction and thereby reduced nutrient mineralisation in the soil. The model results also showed that whole-tree harvesting can affect tree growth at nitrogen-poor forest sites, such as the ones in northern Sweden, due to the decrease of nitrogen availability after residue removal. Possible ways of reducing this impact could be to compensate the losses with fertilisation or extract residue without foliage in areas of Sweden with low nitrogen deposition. The study highlighted the need to better understand the medium- and long-term effects of whole-tree harvesting on tree growth, since the results suggested that reduced tree growth after whole-tree harvesting could be only temporary. However, these results do not account for prolonged extraction of forest residues that could progressively deplete nutrient pools and lead to permanent effects on tree growth.


Sign in / Sign up

Export Citation Format

Share Document