Organic Pollutant Removal versus Toxicity Reduction in Industrial Wastewater Treatment:  The Example of Wastewater from Fluorescent Whitening Agent Production

2006 ◽  
Vol 40 (10) ◽  
pp. 3395-3401 ◽  
Author(s):  
Annette Köhler ◽  
Stefanie Hellweg ◽  
Beate I. Escher ◽  
Konrad Hungerbühler
2020 ◽  
Vol 1008 ◽  
pp. 202-212
Author(s):  
Andy G. Kumi ◽  
Mona G. Ibrahim ◽  
Mahmoud Nasr ◽  
Manabu Fujii

Excess sludge generated from wastewater treatment plants (WWTPs) can cause negative impacts on human health, water bodies, aquatic plants, and soil quality. However, the produced sludge could be appropriately managed to obtain various economic and environmental benefits. One of the feasible and practical options of sludge management is the synthesize of biochar via oxygen-limited pyrolysis. The use of biochar adsorbent for pollutant removal offers various advantages such as high adsorption capability, low operating and chemical costs, no production of toxins. Hence, this study addresses the applications of sewage sludge-derived biochar for industrial wastewater treatment. The methods of sludge collection, drying, pulverization, and pyrolysis are illustrated. Biochar characterization methods (SEM, EDX, XRD, and FTIR analyses) and mechanisms of the adsorption process are described. The sludge-derived biochar could be used as an adsorptive material for industrial effluent treatment. Recommendations for future studies that could enhance the adsorption capacity of biochar and modified-biochar are given.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Ayla Uysal ◽  
Eda Boyacioglu

AbstractIn this study, titanium tetrachloride (TiCl4), zirconium tetrachloride (ZrCl4), and zirconium oxychloride (ZrOCl2·8H2O) were evaluated using jar test experiments as coagulants and compared with traditional aluminum sulfate (Al2(SO4)3·18H2O) and ferric chloride (FeCl3) for industrial wastewater treatment. The effects of the initial pH of 4–10 and initial coagulant doses of 10–100 mg/L on chemical oxygen demand (COD) and total suspended solids (TSS) removal were investigated. The performances of the five coagulants were also assessed in terms of the settled sludge volume, the sludge volume index (SVI), and removal efficiencies of metals, color, and total phosphorus (TP) under optimum conditions. In addition, the contents of the residual sludge produced for all five tested coagulants under optimum conditions were determined. The results showed that the maximum removal efficiency of COD (69.33%) was achieved using 100 mg/L TiCl4 at pH 8. The maximum removal efficiency of TSS (98.32%) was achieved using 50 mg/L Al2(SO4)3·18H2O at both pH 8 and 10. The settled sludge volume and SVI generated by TiCl4 were lower than that for the other four tested coagulants. ZrCl4, ZrOCl2·8H2O, FeCl3, and Al2(SO4)3·18H2O resulted in 128.13, 92.39, 72.26, and 69.66 mL/g SVI, while that using TiCl4 was 48.84 mL/g. Ti- and Zr-based coagulants achieved better removal efficiencies of TP, Zn, and Cu than FeCl3 and Al(SO4)3·18H2O. The residual sludge from using Ti and Zr coagulants had a very high TP content. The results indicated that Ti- and Zr-based coagulants could be used as alternatives to traditional coagulants for industrial wastewater treatment.


2016 ◽  
Vol 15 (3) ◽  
pp. 521-526
Author(s):  
Narcis Barsan ◽  
Mariana Turcu ◽  
Emilian Mo.negu.u ◽  
Mihaela Dascalu ◽  
Dana Chitimus ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document