Progestins and Antiprogestins Affect Gene Expression in Early Development in Zebrafish (Danio rerio) at Environmental Concentrations

2012 ◽  
Vol 46 (9) ◽  
pp. 5183-5192 ◽  
Author(s):  
Sara Zucchi ◽  
Sara Castiglioni ◽  
Karl Fent
2018 ◽  
Vol 8 (7) ◽  
pp. 2215-2223 ◽  
Author(s):  
Sarah Edie ◽  
Norann A. Zaghloul ◽  
Carmen C. Leitch ◽  
Donna K. Klinedinst ◽  
Janette Lebron ◽  
...  

Nature ◽  
2020 ◽  
Vol 582 (7812) ◽  
pp. S10-S11 ◽  
Author(s):  
Kristina Campbell

Author(s):  
Karen D. Williams ◽  
Marla B. Sokolowski

Why is there so much variation in insect behavior? This chapter will address the sources of behavioral variability, with a particular focus on phenotypic plasticity. Variation in social, nutritional, and seasonal environmental contexts during development and adulthood can give rise to phenotypic plasticity. To delve into mechanism underlying behavioral flexibility in insects, examples of polyphenisms, a type of phenotypic plasticity, will be discussed. Selected examples reveal that environmental change can affect gene expression, which in turn can affect behavioral plasticity. These changes in gene expression together with gene-by-environment interactions are discussed to illuminate our understanding of insect behavioral plasticity.


2021 ◽  
Vol 5 (10) ◽  
pp. 1382-1393
Author(s):  
Xinyu Jiang ◽  
Qingxin Song ◽  
Wenxue Ye ◽  
Z. Jeffrey Chen

AbstractDuring evolution successful allopolyploids must overcome ‘genome shock’ between hybridizing species but the underlying process remains elusive. Here, we report concerted genomic and epigenomic changes in resynthesized and natural Arabidopsis suecica (TTAA) allotetraploids derived from Arabidopsisthaliana (TT) and Arabidopsisarenosa (AA). A. suecica shows conserved gene synteny and content with more gene family gain and loss in the A and T subgenomes than respective progenitors, although A. arenosa-derived subgenome has more structural variation and transposon distributions than A. thaliana-derived subgenome. These balanced genomic variations are accompanied by pervasive convergent and concerted changes in DNA methylation and gene expression among allotetraploids. The A subgenome is hypomethylated rapidly from F1 to resynthesized allotetraploids and convergently to the T-subgenome level in natural A. suecica, despite many other methylated loci being inherited from F1 to all allotetraploids. These changes in DNA methylation, including small RNAs, in allotetraploids may affect gene expression and phenotypic variation, including flowering, silencing of self-incompatibility and upregulation of meiosis- and mitosis-related genes. In conclusion, concerted genomic and epigenomic changes may improve stability and adaptation during polyploid evolution.


Cryobiology ◽  
2010 ◽  
Vol 61 (3) ◽  
pp. 389
Author(s):  
K.K. Desai ◽  
E. Spikings ◽  
D.M. Rawson ◽  
T. Zhang

2003 ◽  
Vol 100 (10) ◽  
pp. 5920-5925 ◽  
Author(s):  
R. Alami ◽  
Y. Fan ◽  
S. Pack ◽  
T. M. Sonbuchner ◽  
A. Besse ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document