human chromosome 21
Recently Published Documents


TOTAL DOCUMENTS

319
(FIVE YEARS 14)

H-INDEX

44
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Yasuhiro Kazuki ◽  
Feng J Gao ◽  
Miho Yamakawa ◽  
Masumi Hirabayashi ◽  
Kanako Kazuki ◽  
...  

Progress in earlier detection and symptom management has increased life expectancy and quality of life in people with Down syndrome (DS). However, no drug has been approved to help individuals with DS live independently and fully. Although rat models could support more robust physiological, behavioral, and toxicology analysis than mouse models during preclinical validation, no DS rat model is available due to technical challenges. We developed the first transchromosomic rat model of DS, TcHSA21rat, which contains a freely segregating, EGFP-inserted, human chromosome 21 (HSA21) with >93% of its protein coding genes. RNA-Seq of neonatal forebrains demonstrates that TcHSA21rat not only expresses HSA21 genes but also has an imbalance in global gene expression. Using EGFP as a marker for trisomic cells, flow cytometry analyses of peripheral blood cells from 361 adult TcHSA21rat animals show that 81% of animals retain HSA21 in >80% of cells, the criterion for a "Down syndrome karyotype" in people. TcHSA21rat exhibits learning and memory deficits and shows increased anxiety and hyperactivity. TcHSA21rat recapitulates well-characterized DS brain morphology, including smaller brain volume and reduced cerebellar size. In addition, the rat model shows reduced cerebellar foliation, a prominent feature of DS that is not observed in DS mouse models. Moreover, TcHSA21rat exhibits anomalies in craniofacial morphology, heart development, husbandry, and stature. TcHSA21rat is a robust DS animal model that can facilitate DS basic research and provide a unique tool for preclinical validation to accelerate DS drug development.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1528
Author(s):  
Md. Mahiuddin Ahmed ◽  
Aaron Block ◽  
Nicolas Busquet ◽  
Katheleen J. Gardiner

Down syndrome (DS), trisomy of the long arm of human chromosome 21 (Hsa21), is the most common genetic cause of intellectual disability (ID). Currently, there are no effective pharmacotherapies. The success of clinical trials to improve cognition depends in part on the design of preclinical evaluations in mouse models. To broaden understanding of the common limitations of experiments in learning and memory, we report performance in context fear conditioning (CFC) in three mouse models of DS, the Dp(16)1Yey, Dp(17)1Yey and Dp(10)1Yey (abbreviated Dp16, Dp17 and Dp10), separately trisomic for the human Hsa21 orthologs mapping to mouse chromosomes 16, 17 and 10, respectively. We examined female and male mice of the three lines on the standard C57BL/6J background at 3 months of age and Dp17 and Dp10 at 18 months of age. We also examined female and male mice of Dp17 and Dp10 at 3 months of age as F1 hybrids obtained from a cross with the DBA/2J background. Results indicate that genotype, sex, age and genetic background affect CFC performance. These data support the need to use both female and male mice, trisomy of sets of all Hsa21 orthologs, and additional ages and genetic backgrounds to improve the reliability of preclinical evaluations of drugs for ID in DS.


Author(s):  
Eva Lana-Elola ◽  
Heather Cater ◽  
Sheona Watson-Scales ◽  
Simon Greenaway ◽  
Jennifer Müller-Winkler ◽  
...  

Down syndrome (DS), trisomy 21, results in many complex phenotypes including cognitive deficits, heart defects and craniofacial alterations. Phenotypes arise from an extra copy of human chromosome 21 (Hsa21) genes. However, these dosage-sensitive causative genes remain unknown. Animal models enable identification of genes and pathological mechanisms. The Dp1Tyb mouse model of DS has an extra copy of 63% of Hsa21-orthologous mouse genes. In order to establish if this model recapitulates DS phenotypes, we comprehensively phenotyped Dp1Tyb mice using 28 tests of different physiological systems and found that 468 out of 1800 parameters were significantly altered. We show that Dp1Tyb mice have wide-ranging DS-like phenotypes including aberrant erythropoiesis and megakaryopoiesis, reduced bone density, craniofacial changes, altered cardiac function, a pre-diabetic state and deficits in memory, locomotion, hearing and sleep. Thus, Dp1Tyb mice are an excellent model for investigating complex DS phenotype-genotype relationships for this common disorder.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1215
Author(s):  
Yichen Li ◽  
Zhuo Xing ◽  
Tao Yu ◽  
Annie Pao ◽  
Marcel Daadi ◽  
...  

Down syndrome (DS) is one of the most complex genetic disorders in humans and a leading genetic cause of developmental delays and intellectual disabilities. The mouse remains an essential model organism in DS research because human chromosome 21 (Hsa21) is orthologously conserved with three regions in the mouse genome. Recent studies have revealed complex interactions among different triplicated genomic regions and Hsa21 gene orthologs that underlie major DS phenotypes. Because we do not know conclusively which triplicated genes are indispensable in such interactions for a specific phenotype, it is desirable that all evolutionarily conserved Hsa21 gene orthologs are triplicated in a complete model. For this reason, the Dp(10)1Yey/+;Dp(16)1Yey/+;Dp(17)1Yey/+ mouse is the most complete model of DS to reflect gene dosage effects because it is the only mutant triplicated for all Hsa21 orthologous regions. Recently, several groups have expressed concerns that efforts needed to generate the triple compound model would be so overwhelming that it may be impractical to take advantage of its unique strength. To alleviate these concerns, we developed a strategy to drastically improve the efficiency of generating the triple compound model with the aid of a targeted coat color, and the results confirmed that the mutant mice generated via this approach exhibited cognitive deficits.


2021 ◽  
Author(s):  
Eva Lana-Elola ◽  
Heather Cater ◽  
Sheona Watson-Scales ◽  
Simon Greenaway ◽  
Jennifer Müller-Winkler ◽  
...  

AbstractDown syndrome (DS), trisomy 21, results in many complex phenotypes including cognitive deficits, heart defects and craniofacial alterations. Phenotypes arise from an extra copy of human chromosome 21 (Hsa21) genes. However, causative genes remain mostly unknown. Animal models enable identification of these genes and pathological mechanisms. The Dp1Tyb mouse model of DS has an extra copy of 63% of Hsa21-orthologous mouse genes. Here, we comprehensively phenotype Dp1Tyb mice and find wide-ranging DS-like phenotypes including aberrant megakaryopoiesis, reduced bone density, and deficits in memory, locomotion, hearing and sleep. Thus, Dp1Tyb mice are an excellent model for studies of many complex DS phenotypes.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Yasuhiro Kazuki ◽  
Feng J Gao ◽  
Yicong Li ◽  
Anna J Moyer ◽  
Benjamin Devenney ◽  
...  

Animal models of Down syndrome (DS), trisomic for human chromosome 21 (HSA21) genes or orthologs, provide insights into better understanding and treatment options. The only existing transchromosomic (Tc) mouse DS model, Tc1, carries a HSA21 with over 50 protein coding genes (PCGs) disrupted. Tc1 is mosaic, compromising interpretation of results. Here, we “clone” the 34 MB long arm of HSA21 (HSA21q) as a mouse artificial chromosome (MAC). Through multiple steps of microcell-mediated chromosome transfer, we created a new Tc DS mouse model, Tc(HSA21q;MAC)1Yakaz (“TcMAC21”). TcMAC21 is not mosaic and contains 93% of HSA21q PCGs that are expressed and regulatable. TcMAC21 recapitulates many DS phenotypes including anomalies in heart, craniofacial skeleton and brain, molecular/cellular pathologies, and impairments in learning, memory and synaptic plasticity. TcMAC21 is the most complete genetic mouse model of DS extant and has potential for supporting a wide range of basic and preclinical research.


2020 ◽  
Author(s):  
Yasuhiro Kazuki ◽  
Feng J Gao ◽  
Yicong Li ◽  
Anna J Moyer ◽  
Benjamin Devenney ◽  
...  

2020 ◽  
Vol 139 (12) ◽  
pp. 1555-1563 ◽  
Author(s):  
Taichi Imaizumi ◽  
Keiko Yamamoto-Shimojima ◽  
Tomoe Yanagishita ◽  
Yumiko Ondo ◽  
Eriko Nishi ◽  
...  

2019 ◽  
Author(s):  
Yasuhiro Kazuki ◽  
Feng J. Gao ◽  
Yicong Li ◽  
Anna J. Moyer ◽  
Benjamin Devenney ◽  
...  

AbstractDown syndrome (DS) is a complex human condition, and animal models trisomic for human chromosome 21 (HSA21) genes or orthologs provide insights into better understanding and treating DS. However, HSA21 orthologs are distributed into three mouse chromosomes, preventing us from generating mouse models trisomy of a complete set of HSA21 orthologs. The only existing humanized mouse DS model, Tc1, carries a HSA21 with over 20% of protein coding genes (PCGs) disrupted. More importantly, due to the human centromere, Tc1 is mosaic (a mix of euploid and trisomic cells), which makes every mouse unique and compromises interpretation of results. Here, we used mouse artificial chromosome (MAC) technology to “clone” the 34 MB long arm of HSA21 (HSA21q). Through multiple steps of microcell-mediated chromosome transfer we created a new humanized DS mouse model, Tc(HSA21q;MAC)1Yakaz (“TcMAC21”). Constitutive EGFP expression from the transchromosome and fluorescent in situ hybridization validate that TcMAC21, containing a hybrid chromosome of HSA21q and mouse centromere, is not mosaic. Whole genome sequencing shows that TcMAC21 contains a nearly complete copy of HSA21q with 93% of intact PCGs, while RNA-seq and additional mRNA/protein expression analyses confirm that PCGs are transcribed and regulated. A battery of tests show that TcMAC21 recapitulates many DS phenotypes including morphological anomalies in heart, craniofacial skeleton and brain, pathologies at molecular and cellular level, and impairments in learning, memory and synaptic plasticity. TcMAC21 is the most complete mouse model of DS extant and has potential for supporting a wide range of basic and preclinical research.Significance StatementIn the last 25 years, mouse models of trisomy 21 have supported research into Down syndrome, from defining the basis for developmental effects up to support for clinical trials. However, existing models have significant shortfalls, especially for preclinical studies. These deficiencies include incomplete or inappropriate representation of trisomic genes, absence of an extra chromosome, and mosaicism.Using cutting edge technologies we produced a mouse artificial chromosome containing the entire 34Mb long arm of human chromosome 21 and, with assisted reproductive technologies, established it in the germ line of mice. This trisomic mouse manifests developmental and functional features of Down syndrome, including hippocampal-based learning and memory deficits. This is the most complete model of Down syndrome produced to date.


Sign in / Sign up

Export Citation Format

Share Document