Reductive Dechlorination of 1,2,3,4-Tetrachlorodibenzo-p-dioxin and Its Products by Anaerobic Mixed Cultures from Saale River Sediment

1997 ◽  
Vol 31 (6) ◽  
pp. 1749-1753 ◽  
Author(s):  
Hendrik Ballerstedt ◽  
Angelika Kraus ◽  
Ute Lechner
2004 ◽  
Vol 70 (10) ◽  
pp. 6347-6351 ◽  
Author(s):  
Rosa Krajmalnik-Brown ◽  
Tina Hölscher ◽  
Ivy N. Thomson ◽  
F. Michael Saunders ◽  
Kirsti M. Ritalahti ◽  
...  

ABSTRACT Dehalococcoides sp. strain BAV1 couples growth with the reductive dechlorination of vinyl chloride (VC) to ethene. Degenerate primers targeting conserved regions in reductive dehalogenase (RDase) genes were designed and used to PCR amplify putative RDase genes from strain BAV1. Seven unique RDase gene fragments were identified. Transcription analysis of VC-grown BAV1 cultures suggested that bvcA was involved in VC reductive dechlorination, and the complete sequence of bvcA was obtained. bvcA was absent in Dehalococcoides isolates that failed to respire VC, yet was detected in four of eight VC-respiring mixed cultures.


2016 ◽  
Vol 65 (3) ◽  
pp. 341-352 ◽  
Author(s):  
Wael S. El-Sayed

Anaerobic reductive dechlorination of 2,3-dichlorophenol (2,3DCP) and 2,4,6-trichlorophenol (2,4,6TCP) was investigated in microcosms from River Nile sediment. A stable sediment-free anaerobic microbial consortium reductively dechlorinating 2,3DCP and 2,4,6TCP was established. Defined sediment-free cultures showing stable dechlorination were restricted to ortho chlorine when enriched with hydrogen as the electron donor, acetate as the carbon source, and either 2,3-DCP or 2,4,6-TCP as electron acceptors. When acetate, formate, or pyruvate were used as electron donors, dechlorination activity was lost. Only lactate can replace dihydrogen as an electron donor. However, the dechlorination potential was decreased after successive transfers. To reveal chlororespiring species, the microbial community structure of chlorophenol-reductive dechlorinating enrichment cultures was analyzed by PCR-denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. Eight dominant bacteria were detected in the dechlorinating microcosms including members of the genera Citrobacter, Geobacter, Pseudomonas, Desulfitobacterium, Desulfovibrio, and Clostridium. Highly enriched dechlorinating cultures were dominated by four bacterial species belonging to the genera Pseudomonas, Desulfitobacterium, and Clostridium. Desulfitobacterium represented the major fraction in DGGE profiles indicating its importance in dechlorination activity, which was further confirmed by its absence resulting in complete loss of dechlorination. Reductive dechlorination was confirmed by the stoichiometric dechlorination of 2,3DCP and 2,4,6TCP to metabolites with less chloride groups and by the detection of chlorophenol RD cprA gene fragments in dechlorinating cultures. PCR amplified cprA gene fragments were cloned and sequenced and found to cluster with the cprA/pceA type genes of Dehalobacter restrictus.


1999 ◽  
Vol 65 (9) ◽  
pp. 4049-4056 ◽  
Author(s):  
Frank E. Löffler ◽  
James M. Tiedje ◽  
Robert A. Sanford

ABSTRACT Measurements of the hydrogen consumption threshold and the tracking of electrons transferred to the chlorinated electron acceptor (fe) reliably detected chlororespiratory physiology in both mixed cultures and pure cultures capable of using tetrachloroethene,cis-1,2-dichloroethene, vinyl chloride, 2-chlorophenol, 3-chlorobenzoate, 3-chloro-4-hydroxybenzoate, or 1,2-dichloropropane as an electron acceptor. Hydrogen was consumed to significantly lower threshold concentrations of less than 0.4 ppmv compared with the values obtained for the same cultures without a chlorinated compound as an electron acceptor. The fe values ranged from 0.63 to 0.7, values which are in good agreement with theoretical calculations based on the thermodynamics of reductive dechlorination as the terminal electron-accepting process. In contrast, a mixed methanogenic culture that cometabolized 3-chlorophenol exhibited a significantly lower fe value, 0.012.


Sign in / Sign up

Export Citation Format

Share Document