Nature of Transannular Intramolecular Interactions in Group 4 and 6 Metallatranes: A Combined Density Functional Theory and Atoms in Molecules Theory Study

2010 ◽  
Vol 49 (21) ◽  
pp. 9884-9890 ◽  
Author(s):  
Ashwini K. Phukan ◽  
Ankur Kanti Guha
2017 ◽  
Vol 17 (11) ◽  
pp. 5845-5857 ◽  
Author(s):  
Marcos A. P. Martins ◽  
Leticia V. Rodrigues ◽  
Alexandre R. Meyer ◽  
Clarissa P. Frizzo ◽  
Manfredo Hörner ◽  
...  

Author(s):  
Victor H. Chávez ◽  
Adam Wasserman

In some sense, quantum mechanics solves all the problems in chemistry: The only thing one has to do is solve the Schrödinger equation for the molecules of interest. Unfortunately, the computational cost of solving this equation grows exponentially with the number of electrons and for more than ~100 electrons, it is impossible to solve it with chemical accuracy (~ 2 kcal/mol). The Kohn-Sham (KS) equations of density functional theory (DFT) allow us to reformulate the Schrödinger equation using the electronic probability density as the central variable without having to calculate the Schrödinger wave functions. The cost of solving the Kohn-Sham equations grows only as N3, where N is the number of electrons, which has led to the immense popularity of DFT in chemistry. Despite this popularity, even the most sophisticated approximations in KS-DFT result in errors that limit the use of methods based exclusively on the electronic density. By using fragment densities (as opposed to total densities) as the main variables, we discuss here how new methods can be developed that scale linearly with N while providing an appealing answer to the subtitle of the article: What is the shape of atoms in molecules?


Sign in / Sign up

Export Citation Format

Share Document