DNA Cleavage Activity of Fe(II)N4Py under Photo Irradiation in the Presence of 1,8-Naphthalimide and 9-Aminoacridine: Unexpected Effects of Reactive Oxygen Species Scavengers

2011 ◽  
Vol 50 (17) ◽  
pp. 8318-8325 ◽  
Author(s):  
Qian Li ◽  
Wesley R. Browne ◽  
Gerard Roelfes
2011 ◽  
Vol 102 (3) ◽  
pp. 200-208 ◽  
Author(s):  
Y. Yesuthangam ◽  
S. Pandian ◽  
K. Venkatesan ◽  
R. Gandhidasan ◽  
R. Murugesan

2019 ◽  
Vol 51 (7) ◽  
pp. 688-696 ◽  
Author(s):  
Xiaodong Cui ◽  
Tingfen Wang ◽  
Wenming Wang ◽  
Hongfei Wang ◽  
Zhuanhua Wang

Abstract In this study, the mechanism of DNA cleavage by cationic peroxidase from proso millet (PmPOD) was investigated. PmPOD cleaved supercoiled circular DNA into both nicked circular and linear forms via a cleavage mechanism that resembles those of native endonucleases. Inhibition and ligation studies demonstrated that reactive oxygen species and the ferriprotoporphyrin IX moiety in PmPOD are not involved in PmPOD-mediated DNA cleavage. Similar to other endonucleases, Mg ions considerably enhance the DNA cleavage activity of PmPOD. Further studies suggested that PmPOD can disrupt phosphodiester bonds in DNA and mononucleotides, indicating that it is a phosphatase. The phosphatase activity of PmPOD is higher than that of horseradish peroxidase (HRP), but the peroxidase activity of PmPOD was lower than that of HRP. PmPOD-mediated hydrolytic cleavage of DNA observed in this study is different from those reported for heme proteins. This study provides valuable insights into the distinct mechanisms underlying DNA cleavage by heme proteins.


Redox Report ◽  
2011 ◽  
Vol 16 (5) ◽  
pp. 201-207 ◽  
Author(s):  
Andréia da Silva Fernandes ◽  
José Luiz Mazzei ◽  
Alexandre Santos de Alencar ◽  
Heitor Evangelista ◽  
Israel Felzenszwalb

2009 ◽  
pp. c3 ◽  
Author(s):  
Helena M. Cochemé ◽  
Michael P. Murphy

2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


2001 ◽  
Vol 120 (5) ◽  
pp. A361-A361
Author(s):  
K UCHIKURA ◽  
T WADA ◽  
Z SUN ◽  
S HOSHINO ◽  
G BULKLEY ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document