Fas ligand expression in rat kupffer cells in response to lipopolysaccharide is mediated by reactive oxygen species

2001 ◽  
Vol 120 (5) ◽  
pp. A361-A361
Author(s):  
K UCHIKURA ◽  
T WADA ◽  
Z SUN ◽  
S HOSHINO ◽  
G BULKLEY ◽  
...  
2001 ◽  
Vol 120 (5) ◽  
pp. A361
Author(s):  
Keiichiro Uchikura ◽  
Tatehiko Wada ◽  
Zhao-Li Sun ◽  
Sumito Hoshino ◽  
Gregory B. Bulkley ◽  
...  

2004 ◽  
Vol 287 (3) ◽  
pp. G620-G626 ◽  
Author(s):  
Keiichiro Uchikura ◽  
Tatehiko Wada ◽  
Sumito Hoshino ◽  
Yuichi Nagakawa ◽  
Takashi Aiko ◽  
...  

Fas-Fas ligand (FasL)-dependent pathways exert a suppressive effect on inflammatory responses in immune-privileged organs. FasL expression in hepatic Kupffer cells (KC) has been implicated in hepatic immunoregulation. In this study, modulation of FasL expression of KC by endogenous gut-derived bacterial LPS and the role of reactive oxygen species (ROS) as potential mediators of FasL expression in KC were investigated. LPS stimulation of KC resulted in upstream ROS generation and, subsequently, increased FasL expression and consequent Jurkat cell (Fas-positive) apoptosis. The NADPH oxidase and xanthine oxidase enzymatic pathways appear to be major sources of this upstream ROS generation. Increased FasL expression was blocked by antioxidants and by enzymatic blocking of ROS generation. Exogenous administration of H2O2stimulated KC FasL expression and subsequent Jurkat cell apoptosis. Intracellular endogenous ROS generation may therefore represent an important signal transduction pathway for FasL expression in KC.


2014 ◽  
Vol 44 (6) ◽  
pp. 2016-2024 ◽  
Author(s):  
GA BIN PARK ◽  
DAEJIN KIM ◽  
HOI SOO YOON ◽  
YEONG-SEOK KIM ◽  
HYUN-KYUNG LEE ◽  
...  

2001 ◽  
Vol 123 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Shu-Huei Tsai ◽  
Ming-Shium Hsieh ◽  
Linda Chen ◽  
Yu-Chih Liang ◽  
Jen-Kun Lin ◽  
...  

2010 ◽  
Vol 63 (11-12) ◽  
pp. 827-832 ◽  
Author(s):  
Tatjana Radosavljevic ◽  
Dusan Mladenovic ◽  
Danijela Vucevic ◽  
Rada Jesic-Vukicevic

Introduction. Paracetamol is an effective analgesic/antipyretic drug when used at therapeutic doses. However, the overdose of paracetamol can cause severe liver injury and liver necrosis. The mechanism of paracetamol-induced liver injury is still not completely understood. Reactive metabolite formation, depletion of glutathione and alkylation of proteins are the triggers of inhibition of mitochondrial respiration, adenosine triphosphate depletion and mitochondrial oxidant stress leading to hepatocellular necrosis. Role of oxidative stress in paracetamol-induced liver injury. The importance of oxidative stress in paracetamol hepatotoxicity is controversial. Paracetamol induced liver injury cause the formation of reactive oxygen species. The potent sources of reactive oxygen are mitochondria, neutrophils, Kupffer cells and the enzyme xatnine oxidase. Free radicals lead to lipid peroxidation, enzymatic inactivation and protein oxidation. Role of mitochondria in paracetamol-induced oxidative stress. The production of mitochondrial reactive oxygen species is increased, and the glutathione content is decreased in paracetamol overdose. Oxidative stress in mitochondria leads to mito?chondrial dysfunction with adenosine triphosphate depletion, increase mitochondrial permeability transition, deoxyribonu?cleic acid fragmentation which contribute to the development of hepatocellular necrosis in the liver after paracetamol overdose. Role of Kupffer cells in paracetamol-induced liver injury. Paracetamol activates Kupffer cells, which then release numerous cytokines and signalling molecules, including nitric oxide and superoxide. Kupffer cells are important in peroxynitrite formation. On the other hand, the activated Kupffer cells release anti-inflammatory cytokines. Role of neutrophils in paracetamol-induced liver injury. Paracetamol-induced liver injury leads to the accumulation of neutrophils, which release lysosomal enzymes and generate superoxide anion radicals through the enzyme nicotinamide adenine dinucleotide phosphate oxidase. Hydrogen peroxide, which is influenced by the neutrophil-derived enzyme myeloperoxidase, generates hypochlorus acid as a potent oxidant. Role of peroxynitrite in paracetamol-induced oxidative stress. Superoxide can react with nitric oxide to form peroxynitrite, as a potent oxidant. Nitrotyrosine is formed by the reaction of tyrosine with peroxynitrite in paracetamol hepatotoxicity. Conclusion. Overdose of paracetamol may produce severe liver injury with hepatocellular necrosis. The most important mechanisms of cell injury are metabolic activation of paracetamol, glutathione depletion, alkylation of proteins, especially mitochondrial proteins, and formation of reactive oxygen/nitrogen species.


2005 ◽  
Vol 389 (2) ◽  
pp. 527-539 ◽  
Author(s):  
Shasi V. Kalivendi ◽  
Eugene A. Konorev ◽  
Sonya Cunningham ◽  
Sravan K. Vanamala ◽  
Eugene H. Kaji ◽  
...  

Doxorubicin (DOX), a widely used antitumour drug, causes dose-dependent cardiotoxicity. Cardiac mitochondria represent a critical target organelle of toxicity during DOX chemotherapy. Proposed mechanisms include generation of ROS (reactive oxygen species) and disturbances in mitochondrial calcium homoeostasis. In the present study, we probed the mechanistic link between mitochondrial ROS and calcium in the embryonic rat heart-derived H9c2 cell line and in adult rat cardiomyocytes. The results show that DOX stimulates calcium/calcineurin-dependent activation of the transcription factor NFAT (nuclear factor of activated T-lymphocytes). Pre-treatment of cells with an intracellular calcium chelator abrogated DOX-induced nuclear NFAT translocation, Fas L (Fas ligand) expression and caspase activation, as did pre-treatment of cells with a mitochondria-targeted antioxidant, Mito-Q (a mitochondria-targeted antioxidant consisting of a mixture of mitoquinol and mitoquinone), or with adenoviral-over-expressed antioxidant enzymes. Treatment with GPx-1 (glutathione peroxidase 1), MnSOD (manganese superoxide dismutase) or a peptide inhibitor of NFAT also inhibited DOX-induced nuclear NFAT translocation. Pre-treatment of cells with a Fas L neutralizing antibody abrogated DOX-induced caspase-8- and -3-like activities during the initial stages of apoptosis. We conclude that mitochondria-derived ROS and calcium play a key role in stimulating DOX-induced ‘intrinsic and extrinsic forms’ of apoptosis in cardiac cells with Fas L expression via the NFAT signalling mechanism. Implications of ROS- and calcium-dependent NFAT signalling in DOX-induced apoptosis are discussed.


2005 ◽  
Vol 83 (4) ◽  
pp. 336-343 ◽  
Author(s):  
Kosei Maemura ◽  
Qizhi Zheng ◽  
Tatehiko Wada ◽  
Michitaka Ozaki ◽  
Sonshin Takao ◽  
...  

1988 ◽  
Vol 23 (6) ◽  
pp. 688-694 ◽  
Author(s):  
K. J. Virk ◽  
N. K. Ganguly ◽  
R. C. Mahajan ◽  
S. R. Bhushnurmath ◽  
J. B. Dilawari

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yi-Jen Peng ◽  
Ching-Tsung Peng ◽  
Yi-Hsuan Lin ◽  
Gu-Jiun Lin ◽  
Shing-Hwa Huang ◽  
...  

Purpose. Interleukin-1α (IL-1α) is a potent cytokine that plays a role in inflammatory arthritis and bone loss. Decoy receptor 3 (DCR3) is an immune modulator of monocytes and macrophages. The aim of this study was to investigate the mechanism of DCR3 in IL-1α-induced osteoclastogenesis. Methods. We treated murine macrophages with DCR3 during receptor activator of nuclear factor kappa Β ligand- (RANKL-) plus IL-1α-induced osteoclastogenesis to monitor osteoclast formation by tartrate-resistant acid phosphatase (TRAP) staining. Osteoclast activity was assessed using a pit formation assay. The mechanisms of inhibition were studied by biochemical analyses, including RT-PCR, immunofluorescent staining, flow cytometry, an apoptosis assay, immunoblotting, and ELISA. Results. DCR3 suppresses IL-1α-induced osteoclastogenesis in both primary murine bone marrow-derived macrophages (BMM) and RAW264.7 cells as it inhibits bone resorption. DCR3 induces RANKL-treated osteoclast precursor cells to express IL-1α, secretory IL-1ra (sIL-1ra), intracellular IL-1ra (icIL-1ra), reactive oxygen species (ROS), and Fas ligand and to activate IL-1α-induced interleukin-1 receptor-associated kinase 4 (IRAK4). The suppression of DCR3 during RANKL- or IL-1α-induced osteoclastogenesis may be due to the abundant secretion of IL-1ra, accumulation of ROS, and expression of Fas ligand in apoptotic osteoclast precursor cells. Conclusions. We concluded that there is an inhibitory effect of DCR3 on osteoclastogenesis via ROS accumulation and ROS-induced Fas ligand, IL-1α, and IL-1ra expression. Our results suggested that the upregulation of DCR3 in preosteoclasts might be a therapeutic target in inflammatory IL-1α-induced bone resorption.


2005 ◽  
Vol 280 (17) ◽  
pp. 17497-17506 ◽  
Author(s):  
Xiao-chun Bai ◽  
Di Lu ◽  
An-ling Liu ◽  
Zhong-ming Zhang ◽  
Xiu-mei Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document