Computational Fluid Dynamics Simulation of Three-Dimensional Liquid Flow and Mass Transfer on Distillation Column Trays

2004 ◽  
Vol 43 (10) ◽  
pp. 2556-2567 ◽  
Author(s):  
X. Ling Wang ◽  
C. Jiang Liu ◽  
X. Gang Yuan ◽  
K. T. Yu
Author(s):  
Sing Ngie David Chua ◽  
Boon Kean Chan ◽  
Soh Fong Lim

Thermal accumulation in a car cabin under direct exposure to sunlight can be extremely critical due to the risk of heatstroke especially to children who are left unattended in the car. There are very limited studies in the literature to understand the thermal behaviour of a car that is parked in an open car park space and the findings are mostly inconsistent among researchers. In this paper, the studies of thermal accumulation in an enclosed vehicle by experimental and computational fluid dynamics simulation approaches were carried out. An effective and economical method to reduce the heat accumulation was proposed. Different test conditions such as fully enclosed, fully enclosed with sunshade on front windshield and different combinations of window gap sizes were experimented and presented. Eight points of measurement were recorded at different locations in the car cabin and the results were used as the boundary conditions for the three-dimensional computational fluid dynamics simulation. The computational fluid dynamics software used was ANSYS FLUENT 16.0. The results showed that the application of sunshade helped to reduce thermal accumulation at car cabin by 11.5%. The optimum combination of windows gap size was found to be with 4-cm gap on all four windows which contributed to a 21.1% reduction in car cabin temperature. The results obtained from the simulations were comparable and in agreement with the experimental tests.


Author(s):  
Shuai Yang ◽  
Dazhuan Wu ◽  
Zhounian Lai ◽  
Tao Du

In this study, three-dimensional computational fluid dynamics simulation was adopted to evaluate the valve-induced water hammer phenomena in a typical tank-pipeline-valve-tank system. Meanwhile, one-dimensional analysis based on method of characteristics was also used for comparison and reference. As for the computational fluid dynamics model, the water hammer event was successfully simulated by using the sliding mesh technology and considering water compressibility. The key factors affecting simulation results were investigated in detail. It is found that the size of time step has an obvious effect on the attenuation of the wave and there exists a best time step. The obtained simulation results have a good agreement with the experimental data, which shows an unquestionable advantage over the method of characteristics calculation in predicting valve-induced water hammer. In addition, the computational fluid dynamics simulation can also provide a visualization of the pressure and flow evolutions during the transient process.


Sign in / Sign up

Export Citation Format

Share Document