Ice−Clathrate Hydrate−Gas Phase Equilibria for Air, Oxygen, Nitrogen, Carbon Monoxide, Methane, or Ethane + Water System†

2010 ◽  
Vol 49 (8) ◽  
pp. 3976-3979 ◽  
Author(s):  
Amir H. Mohammadi ◽  
Dominique Richon
2021 ◽  
Vol 17 ◽  
Author(s):  
Siyamak Shahab ◽  
Masoome Sheikhi ◽  
Mehrnoosh Khaleghian ◽  
Marina Murashko ◽  
Mahin Ahmadianarog ◽  
...  

: For the first time in the present study, the non-bonded interaction of the Coniine (C8H17N) with carbon monoxide (CO) was investigated by density functional theory (DFT/M062X/6-311+G*) in the gas phase and solvent water. The adsorption of the CO over C8H17N was affected on the electronic properties such as EHOMO, ELUMO, the energy gap between LUMO and HOMO, global hardness. Furthermore, chemical shift tensors and natural charge of the C8H17N and complex C8H17N/CO were determined and discussed. According to the natural bond orbital (NBO) results, the molecule C8H17N and CO play as both electron donor and acceptor at the complex C8H17N/CO in the gas phase and solvent water. On the other hand, the charge transfer is occurred between the bonding, antibonding or nonbonding orbitals in two molecules C8H17N and CO. We have also investigated the charge distribution for the complex C8H17N/CO by molecular electrostatic potential (MEP) calculations using the M062X/6-311+G* level of theory. The electronic spectra of the C8H17N and complex C8H17N/CO were calculated by time dependent DFT (TD-DFT) for investigation of the maximum wavelength value of the C8H17N before and after the non-bonded interaction with the CO in the gas phase and solvent water. Therefore, C8H17N can be used as strong absorbers for air purification and reduce environmental pollution.


Author(s):  
Dennis Sherwood ◽  
Paul Dalby

Another key chapter, examining reactions in solution. Starting with the definition of an ideal solution, and then introducing Raoult’s law and Henry’s law, this chapter then draws on the results of Chapter 14 (gas phase equilibria) to derive the corresponding results for equilibria in an ideal solution. A unique feature of this chapter is the analysis of coupled reactions, once again using first principles to show how the coupling of an endergonic reaction to a suitable exergonic reaction results in an equilibrium mixture in which the products of the endergonic reaction are present in much higher quantity. This demonstrates how coupled reactions can cause entropy-reducing events to take place without breaking the Second Law, so setting the scene for the future chapters on applications of thermodynamics to the life sciences, especially chapter 24 on bioenergetics.


2001 ◽  
Vol 46 (2) ◽  
pp. 381-384 ◽  
Author(s):  
Yu-Taek Seo ◽  
Huen Lee ◽  
Ji-Ho Yoon

1964 ◽  
Vol 68 (2) ◽  
pp. 318-322 ◽  
Author(s):  
Edward K. C. Lee ◽  
Y. N. Tang ◽  
F. S. Rowland

Sign in / Sign up

Export Citation Format

Share Document