Investigation of Adsorption Effect of Carbon Monoxide on Coniine: A DFT Study

2021 ◽  
Vol 17 ◽  
Author(s):  
Siyamak Shahab ◽  
Masoome Sheikhi ◽  
Mehrnoosh Khaleghian ◽  
Marina Murashko ◽  
Mahin Ahmadianarog ◽  
...  

: For the first time in the present study, the non-bonded interaction of the Coniine (C8H17N) with carbon monoxide (CO) was investigated by density functional theory (DFT/M062X/6-311+G*) in the gas phase and solvent water. The adsorption of the CO over C8H17N was affected on the electronic properties such as EHOMO, ELUMO, the energy gap between LUMO and HOMO, global hardness. Furthermore, chemical shift tensors and natural charge of the C8H17N and complex C8H17N/CO were determined and discussed. According to the natural bond orbital (NBO) results, the molecule C8H17N and CO play as both electron donor and acceptor at the complex C8H17N/CO in the gas phase and solvent water. On the other hand, the charge transfer is occurred between the bonding, antibonding or nonbonding orbitals in two molecules C8H17N and CO. We have also investigated the charge distribution for the complex C8H17N/CO by molecular electrostatic potential (MEP) calculations using the M062X/6-311+G* level of theory. The electronic spectra of the C8H17N and complex C8H17N/CO were calculated by time dependent DFT (TD-DFT) for investigation of the maximum wavelength value of the C8H17N before and after the non-bonded interaction with the CO in the gas phase and solvent water. Therefore, C8H17N can be used as strong absorbers for air purification and reduce environmental pollution.

2019 ◽  
Vol 19 (2) ◽  
pp. 91-104 ◽  
Author(s):  
Masoome Sheikhi ◽  
Siyamak Shahab ◽  
Radwan Alnajjar ◽  
Mahin Ahmadianarog ◽  
Sadegh Kaviani

Objective: In the present study, the interaction between drug Tyrphostin AG528 and CNT(6,6-6) nanotube by Density Functional Theory (DFT) calculations in solvent water has been investigated for the first time. Methods and Results: According to the calculations, intermolecular hydrogen bonds take place between an active position of the molecule Tyrphostin AG528 and hydrogen atoms of the nanotube which play an important role in the stability of complex CNT(6,6- 6)/Tyrphostin AG528. The non-bonded interaction effects of the molecule Tyrphostin AG528 with CNT(6,6-6) nanotube on the electronic properties, chemical shift tensors and natural charge have also been detected. The natural bond orbital (NBO) analysis suggested that the molecule Tyrphostin AG528 as an electron donor and the CNT(6,6-6) nanotube play the role of an electron acceptor at the complex CNT(6,6-6)/Tyrphostin AG528. Conclusion: The electronic spectra of the Tyrphostin AG528 drug and complex CNT(6,6-6)/Tyrphostin AG528 in solvent water were calculated by Time-Dependent Density Functional Theory (TD-DFT) for the investigation of adsorption effect of the Tyrphostin AG528 drug over nanotube on maximum wavelength. Then, the possibility of the use of CNT(6,6-6) nanotube for Tyrphostin AG528 delivery to the diseased cells has been established.


2018 ◽  
Vol 8 (10) ◽  
pp. 2010 ◽  
Author(s):  
Yongqian Wu ◽  
Shaojian Song ◽  
Dachang Chen ◽  
Xiaoxing Zhang

Based on the first-principles of density functional theory, the SF6 decomposition products including single molecule (SO2F2, SOF2, SO2), double homogenous molecules (2SO2F2, 2SOF2, 2SO2) and double hetero molecules (SO2 and SOF2, SO2 and SO2F2, SOF2 and SO2F2) adsorbed on Pt doped graphene were discussed. The adsorption parameters, electron transfer, electronic properties and energy gap was investigated. The adsorption of SO2, SOF2 and SO2F2 on the surface of Pt-doped graphene was a strong chemisorption process. The intensity of chemical interactions between the molecule and the Pt-graphene for the above three molecules was SO2F2 > SOF2 > SO2. The change of energy gap was also studied and according to the value of energy gap, the conductivity of Pt-graphene before and after adsorbing different gas molecules can be evaluated.


NANO ◽  
2021 ◽  
pp. 2150106
Author(s):  
Anoop Kumar Pandey ◽  
Vijay Singh ◽  
Apoorva Dwivedi

Karanjin, phytochemical from Pongamia pinnata is reported to be effective against HIV that causes AIDS in humans, however, the delivery of this therapeutic molecule still needs improvement. Hence, this study provides a better understanding of the nonbonded interaction between an anti-HIV drug karanjin and carbon nanotube (CNT) (C56H16). The electronic structure and interaction properties of the molecule karanjin over the surface of CNT were theoretically studied in the gas phase by DFT/B3LYP/6-31G ([Formula: see text]) level of theory for the first time. The UV–Vis spectra and transitions of the karanjin drug, CNT (C56H16) and complex CNT (C-56)/karanjin in gas phase have been calculated by time-dependent density functional theory (TDDFT) for the investigation of adsorption effect. To support our hypothesis, we have performed quantum chemical analysis for CNT (C56H16)/karanjin in water and DMSO solvent. In this process, this CNT (C-56)/karanjin complex enters into affected cell in liquid medium. After that, the drug delivery system CNT (C-56) unloads karanjin at the affected site. The binding character interactive species have been determined by NBO and AIM analysis. The frontier orbital HOMO–LUMO gap, chemical softness, chemical hardness have also been calculated to understand its complete chemical properties. The outcomes from our interaction of drug karanjin with CNT (C56H16) will be instrumental for better drug delivery potential in the upcoming future.


2021 ◽  
Vol 4 (4) ◽  
pp. 236-251
Author(s):  
A. S. Gidado ◽  
L. S. Taura ◽  
A. Musa

Pyrene (C16H10) is an organic semiconductor which has wide applications in the field of organic electronics suitable for the development of organic light emitting diodes (OLED) and organic photovoltaic cells (OPV). In this work, Density Functional Theory (DFT) using Becke’s three and Lee Yang Parr (B3LYP) functional with basis set 6-311++G(d, p) implemented in Gaussian 03 package was  used to compute total energy, bond parameters, HOMO-LUMO energy gap, electron affinity, ionization potential, chemical reactivity descriptors, dipole moment, isotropic polarizability (α), anisotropy of polarizability ( Δ∝) total first order hyper-polarizability () and second order hyperpolarizability (). The molecules used are pyrene, 1-chloropyrene and 4-chloropyrene  in gas phase and in five different solvents: benzene, chloroform, acetone, DMSO and water. The results obtained show that solvents and chlorination actually influenced the properties of the molecules. The isolated pyrene in acetone has the largest value of HOMO-LUMO energy gap of and is a bit closer to a previously reported experimental value of  and hence is the most stable. Thus, the pyrene molecule has more kinetic stability and can be described as low reactive molecule. The calculated dipole moments are in the order of 4-chloropyrene (1.7645 D) < 1-chloropyrene (1.9663 D) in gas phase. The anisotropy of polarizability ( for pyrene and its derivatives were found to increase with increasing polarity of the solvents.  In a nutshell, the molecules will be promising for organic optoelectronic devices based on their computed properties as reported by this work.


2020 ◽  
Author(s):  
Aqeel A. Hussein ◽  
Ahmed Al-Yasari ◽  
Yumiao Ma

A mechanistic insight into the hetero- and homodimerizations (HETD and HOMD) of styrenes promoted by hypervalent iodine reagents (HVIRs; DMP and PIDA) and facilitated by HFIP to yield all trans cyclobutanes is reported using density functional theory (DFT) calculations. The HFIP molecules lower the energy of the single electron oxidation (SEO) or initiation as a result of strong hydrogen bonding interactions that substantially stabilize the frontier orbitals before and after electron addition. The HETD or HOMD is a radically-characterized π-π stacked head-to-head stepwise [2+2] cycloaddition initiated via SEO by DMP or PIDA, respectively. DFT results supported by quasiclassical molecular dynamics simulations show that HOMD is a competing pathway to HETD although the latter is relatively faster, in accordance with experimental observations. The initiation is a rate-determining step as a thermodynamically endergonic and propagation is accomplished by radically-cationic hetero- and homodimerized intermediate as propagation is faster than single electron reduction (SER) or termination by radically-anionic HVIRs. Initiation by DMP found to be faster and less endergonic than by PIDA due to (1) the energy gap of electron transfer in a SEO step by I(V) is lower than I(III) and (2) the SOMO energy of the radical anion I(V) is lower than I(III). Furthermore, the presence of p-methoxy group is essential to underpin the SEO by which the more thermodynamically favorable SEO leads to a successful cycloaddition as the thermodynamic term represents a major contribution in the initiative barrier.


2020 ◽  
Author(s):  
Aqeel A. Hussein ◽  
Ahmed Al-Yasari ◽  
Yumiao Ma

A mechanistic insight into the hetero- and homodimerizations (HETD and HOMD) of styrenes promoted by hypervalent iodine reagents (HVIRs; DMP and PIDA) and facilitated by HFIP to yield all trans cyclobutanes is reported using density functional theory (DFT) calculations. The HFIP molecules lower the energy of the single electron oxidation (SEO) or initiation as a result of strong hydrogen bonding interactions that substantially stabilize the frontier orbitals before and after electron addition. The HETD or HOMD is a radically-characterized π-π stacked head-to-head stepwise [2+2] cycloaddition initiated via SEO by DMP or PIDA, respectively. DFT results supported by quasiclassical molecular dynamics simulations show that HOMD is a competing pathway to HETD although the latter is relatively faster, in accordance with experimental observations. The initiation is a rate-determining step as a thermodynamically endergonic and propagation is accomplished by radically-cationic hetero- and homodimerized intermediate as propagation is faster than single electron reduction (SER) or termination by radically-anionic HVIRs. Initiation by DMP found to be faster and less endergonic than by PIDA due to (1) the energy gap of electron transfer in a SEO step by I(V) is lower than I(III) and (2) the SOMO energy of the radical anion I(V) is lower than I(III). Furthermore, the presence of p-methoxy group is essential to underpin the SEO by which the more thermodynamically favorable SEO leads to a successful cycloaddition as the thermodynamic term represents a major contribution in the initiative barrier.


2019 ◽  
Vol 18 (05) ◽  
pp. 1950025 ◽  
Author(s):  
Meng Zhang ◽  
Guoqing Li ◽  
Xiaomin Lu ◽  
Qianru Zhang ◽  
Wei Li

To explore the excellent sensor for detecting the pollution gas [Formula: see text], the adsorptions of [Formula: see text] molecule on the surfaces of Fe/Co-doped carbon nanotubes (CNTs) and single vacancy defected (8, 0) CNTs were investigated by using density functional theory (DFT). In addition, the adsorption energies, geometries, energy gaps and electronic structures were analyzed. The results showed that Fe/Co-doping and single-vacancy-defected can improve the adsorption and sensitiveness of CNTs toward [Formula: see text]. Considering the changes of energy gap before and after the [Formula: see text] molecule adsorbed on each modified CNTs and its adsorption strength, Fe-doped CNTs (Fe-CNTs) and Co-doped site-2 single-vacancy-defected CNTs performed better for detecting [Formula: see text] molecule. With the decreasing number of electrons of the doped atom (Fe, Co, Ni), the adsorption became more stable. The results of this paper are profound and meaningful for designing [Formula: see text] sensing devices.


2020 ◽  
Vol 17 ◽  
Author(s):  
Fatemeh Azarakhshi ◽  
Siyamak Shahab ◽  
Sadegh Kaviani ◽  
Masoome Sheikhi

: In current work, the adsorption of Sulfanilamide (SLF) drug over B12N12 and Al12N12 fullerenes was studied using DFT and TDDFT calculations at the M06-2X/6-31+G** level in the solvent water for the first time. The adsorption effect of the SLF on the bonds length, electronic properties such as charge analysis, frontier molecular orbital (FMO), dipole moment and optical properties of B12N12 and Al12N12 fullerenes was investigated. The UV absorption spectra were calculated for study the significant changes are taking place in interactions between SLF and B12N12 and Al12N12 fullerenes. According to charge analysis, it is found that charge transfer occurs from SLF drug to fullerenes and from fullerene to SLF drug. The analysis of the LOL and ELF was shown the N-B and O-B bonds are greater than the other bonds, representing higher electron density localization and stronger covalent characteristic. The adsorption of the SLF from the head of N atom of sulfonamide group on the surface of B12N12 with the lower energy gap (EG) was more considerable than the head O atom and the N atom of NH2-Ar group. It is found that the applied B12N12 fullerene can be suitable as a drug carrier for the delivery of SLF drug.


2021 ◽  
Author(s):  
Kimberly Madison ◽  
Wojciech Kolodziejczyk ◽  
Karina Kapusta ◽  
Glake Hill

Abstract Optoelectronic and charge transport properties of eight novel compounds are presented in this work. Density functional theory B3LYP was utilized to optimize all structures while time-dependent density functional theory was utilized for vertical excitation characteristics. Gas and solvent phases (water, THF, and DCM) were evaluated to gain insight on solid-state and solution processed devices. While the solvent phases enhanced most of the charge transport properties, there was seen a blue-shift in their absorption wavelengths. However, C2, C4, C6, and C8 in THF absorption maxima were the highest and similar to those of the gas phase (605-652 nm). Extension of the polymer size decreased the HOMO-LUMO gap energy with C7 having the lowest energy gap in the gas phase. Although tuning the properties in optoelectronic devices is challenging, these findings will assist with the design of higher quality materials that could surpass the quality of inorganic devices.


2020 ◽  
Author(s):  
James Shee ◽  
Martin Head-Gordon

Electronically-excited states characterized by intramolecular charge-transfer play an essential role in many biological processes and optical devices. The ability to make quantitative ab initio predictions of the relative energetics involved is a challenging yet desirable goal, especially for large molecules in solution. In this work we present a data set of 61 experimental measurements of absorption and emission processes, both in the gas phase and solvents representing a broad range of polarities, which involve intramolecular charge-transfer mediated by a non-zero, “twisted” dihedral angle between one or more donor and acceptor subunits. Among a variety of density functionals investigated within the framework of linear-response theory, the “optimally tuned” LRC-ωPBE functional, which utilizes a system-specific yet non-empirical procedure to specify the range-separation parameter, emerges as the preferred choice. For the entire set of excitation energies, involving changes in dipole moment ranging from 4 to >20 Debye, the mean signed and absolute errors are 0.02 and 0.18 eV, respectively (compared, e.g., to -0.30 and 0.30 for PBE0, 0.44 and 0.47 for LRC-ωPBEh, 0.83 and 0.83 for ωB97X-V). The performance of polarizable continuum solvation models for these charge-transfer excited states is closely examined, and clear trends emerge when measurements corresponding to the four small DMABN-like molecules and a charged species are excluded. We make the case that the large errors found only for small molecules in the gas phase and weak solvents cannot be expected to improve via the optimal tuning procedure, which enforces a condition that is exact only in the wellseparated donor-acceptor limit, and present empirical evidence implicating the outsized importance for small donor-acceptor systems of relaxation effects that cannot be accounted for by linear-response TDDFT within the adiabatic approximation. Finally, we demonstrate the utility of the optimally tuned density functional approach by targeting the charge-transfer states of a large biomimetic model system for light-harvesting structures in Photosystem II.


Sign in / Sign up

Export Citation Format

Share Document