Crystal field-spin orbit perturbation calculations in d2 and d8 trigonal bipyramidal complexes

1970 ◽  
Vol 74 (7) ◽  
pp. 1568-1585 ◽  
Author(s):  
Clifford A. L. Becker ◽  
Devon W. Meek ◽  
Thomas M. Dunn
1968 ◽  
Vol 72 (10) ◽  
pp. 3588-3598 ◽  
Author(s):  
Clifford A. L. Becker ◽  
Devon W. Meek ◽  
T. M. Dunn

1977 ◽  
Vol 55 (10) ◽  
pp. 937-942 ◽  
Author(s):  
A. F. Leung ◽  
Ying-Ming Poon

The absorption spectra of UCl5 single crystal were observed in the region between 0.6 and 2.4 μm at room, 77, and 4.2 K temperatures. Five pure electronic transitions were assigned at 11 665, 9772, 8950, 6643, and 4300 cm−1. The energy levels associated with these transitions were identified as the splittings of the 5f1 ground configuration under the influence of the spin–orbit coupling and a crystal field of C2v symmetry. The number of crystal field parameters was reduced by assuming the point-charge model where the positions of the ions were determined by X-ray crystallography. Then, the crystal field parameters and the spin–orbit coupling constant were calculated to be [Formula: see text],[Formula: see text], [Formula: see text], and ξ = 1760 cm−1. The vibronic analysis showed that the 90, 200, and 320 cm−1 modes were similar to the T2u(v6), T1u(v4), and T1u(v3) of an UCl6− octahedron, respectively.


2011 ◽  
Vol 25 (21) ◽  
pp. 1779-1785
Author(s):  
MINJIE WANG ◽  
LIANXUAN ZHU ◽  
JIANLIANG DANG

The complete high-order perturbation formulas are established by both crystal-field (CF) and charge-transfer (CT) mechanisms. The EPR g factors of MgTiO 3: Cr 3+, SrTiO 3: Cr 3+ and SrTiO 3: Mn 4+ crystals are calculated from the formulas. The calculations of the EPR g factors are in agreement with the experimental values. The contribution rate of the CT mechanism (|ΔgT/ΔgF|) to EPR parameters, increases with the growth of the valence state for the 3dn ions in the crystals. For the higher valence state 3d3 ion Mn 4+ in crystals, the explanation of the EPR parameters reasonably involves both CF and CT mechanisms. The g values are also given from one-spin-orbit-parameter model and crystal-field (CF) mechanism for comparison.


1974 ◽  
Vol 29 (1) ◽  
pp. 31-41 ◽  
Author(s):  
E. König ◽  
S. Kremer

The complete ligand field -Coulomb repulsion -spin orbit interaction matrices have been derived for the d4 and d6 electron configurations within octahedral (Oh) and tetrahedral (Td) symmetry. The calculations were perform ed in both the weak-field and strong-field coupling schemes and complete agreement of the results was achieved. The energy matrices are parametrically dependent on ligand field (Dq), Coulomb repulsion (B, C) and spin-orbit interaction (ζ). Correct energy diagrams are presentend which display the splittings by spin-orbit perturbation as well as the effect of configuration mixing. Applications to the interpretation of optical spectral data, to the detailed behavior at the crossover of ground terms, and to complete studies in magnetism are pointed out.


1974 ◽  
Vol 29 (3) ◽  
pp. 419-428 ◽  
Author(s):  
E. König ◽  
R. Schnakig ◽  
S. Kremer

The complete ligand-field, Coulomb interelectronic repulsion, and spin-orbit interaction matrices have been derived for the d5 electron configuration within octahedral (Oh) and tetrahedral (Td) symmetry. The calculations were performed in both the weak-field and strong-field coupling schemes and complete agreement of the results was achieved. The energy matrices are parametrically dependent on ligand field (Dq), Coulomb repulsion (B, C), and spin-orbit interaction (ζ). Correct energy diagrams are presented which display the splittings by spin-orbit perturbation as well as the effect of configuration mixing. Applications to the interpretation of electronic spectra, and to complete studies in magnetism are pointed out. The detailed behavior at the crossover of ground terms is considered


2018 ◽  
Vol 25 (3) ◽  
pp. 899-905 ◽  
Author(s):  
Patric Zimmermann ◽  
Robert J. Green ◽  
Maurits W. Haverkort ◽  
Frank M. F. de Groot

Some initial instructions for theQuanty4RIXSprogram written in MATLAB®are provided. The program assists in the calculation of 1s 2p RIXS and 1s 2p RIXS–MCD spectra usingQuanty. Furthermore, 1s XAS and 2p 3d RIXS calculations in different symmetries can also be performed. It includes the Hartree–Fock values for the Slater integrals and spin–orbit interactions for several 3dtransition metal ions that are required to create the .lua scripts containing all necessary parameters and quantum mechanical definitions for the calculations. The program can be used free of charge and is designed to allow for further adjustments of the scripts.


2018 ◽  
Vol 112 (7) ◽  
pp. 071903 ◽  
Author(s):  
Nicolas Chauvin ◽  
Amaury Mavel ◽  
Ali Jaffal ◽  
Gilles Patriarche ◽  
Michel Gendry

Sign in / Sign up

Export Citation Format

Share Document