tetrahedral symmetry
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 13)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
pp. e1913254
Author(s):  
Franklin Ramos ◽  
Ana Ramos ◽  
Giuseppe Pellicane ◽  
Lloyd L. Lee

2020 ◽  
pp. 000370282098425
Author(s):  
J. Theo Kloprogge

In nature a wide variety of minerals are known with the general formula X2M(TO4)2·2(H2O) and an important group is formed by minerals with T = As. Most of these occur as minor or trace minerals in environments such as hydrothermal alterations of primary sulfides and arsenides. X-ray Photoelectron Spectroscopy (XPS) and Raman microspectroscopy have been utilized to study the chemistry and crystal structure of the roselite subgroup minerals, Ca2M(AsO4)2·2H2O (with M = Co, Mg, Mn, Zn, and Cu). The arsenate AsO4 stretching region exhibited minor differences between the roselite subgroup minerals, which can be explained by the ionic radius of the cation substituting on the M position in the structure. Multiple AsO4 antisymmetric stretching vibrations were found, pointing to a tetrahedral symmetry reduction. Similar observations were made for the corresponding bending modes. Bands around 450 cm-1 were attributed to ν4 bending modes. Several bands in the 300–350cm-1 region attributed to ν2 bending modes also provide evidence of symmetry reduction of the AsO4 anion. Two broad bands for roselite were found around 3330 and 3120 cm-1 and were attributed to the OH stretching bands of crystal water. These bands are accompanied by two bands around 1700 and 1610 cm-1 attributed to the corresponding OH-bending modes. In conclusion, both XPS and Raman spectroscopy have been shown here to be valuable non-destructive analytical tools to characterize these secondary arsenate minerals. X-ray Photoelectron Spectroscopy and Raman microspectroscopy allow the chemistry and molecular structure of the roselite subgroup minerals to be studied in a non-destructive way. The minerals in the roselite subgroup are easily distinguished based on their chemical composition as determined by XPS. As expected for minerals with the same crystal structure, similarities exist in the Raman spectra, sufficient differences exist to be able to identify these minerals.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
B. O. Forsberg ◽  
S. Aibara ◽  
R. J. Howard ◽  
N. Mortezaei ◽  
E. Lindahl

Abstract The pyruvate dehydrogenase complex (PDC) is a multienzyme complex central to aerobic respiration, connecting glycolysis to mitochondrial oxidation of pyruvate. Similar to the E3-binding protein (E3BP) of mammalian PDC, PX selectively recruits E3 to the fungal PDC, but its divergent sequence suggests a distinct structural mechanism. Here, we report reconstructions of PDC from the filamentous fungus Neurospora crassa by cryo-electron microscopy, where we find protein X (PX) interior to the PDC core as opposed to substituting E2 core subunits as in mammals. Steric occlusion limits PX binding, resulting in predominantly tetrahedral symmetry, explaining previous observations in Saccharomyces cerevisiae. The PX-binding site is conserved in (and specific to) fungi, and complements possible C-terminal binding motifs in PX that are absent in mammalian E3BP. Consideration of multiple symmetries thus reveals a differential structural basis for E3BP-like function in fungal PDC.


2020 ◽  
Author(s):  
B. O. Forsberg ◽  
S. Aibara ◽  
R. J. Howard ◽  
N. Mortezaei ◽  
E. Lindahl

AbstractThe pyruvate dehydrogenase complex (PDC) is a central component of all aerobic respiration, connecting glycolysis to mitochondrial oxidation of pyruvate. Despite its central metabolic role, its precise composition and means of regulation remain unknown. To explain the variation in stoichiometry reported for the E3-recruiting protein X (PX) in the fungal PDC, we established cryo-EM reconstructions of the native and recombinant PDC from the filamentous fungus and model organism Neurospora crassa. We find that the PX C-terminal domain localizes interior to the E2 core. Critically, we show that two distinct arrangements of a trimeric oligomer exists, which both result in strict tetrahedral symmetry of the PDC core interior. Both oligomerization and volume occlusion of the PDC interior by PX appears to limit its binding stoichiometry, which explains the variety of stoichiometries found previously for S. cerevisiae. This also suggests that the PX oligomer stability and size are potential mechanisms to dynamically adjust PDC compostion in response to external cues. Moreover, we find that the site where PX binds is conserved within fungi but not mammals, suggesting that it could be therapeutically targeted. To this end, we also show that a PX knockout results in loss of activity through dysfunctional E3 recruitment, leading to severely impaired N. crassa growth on sucrose. The fungal PDC is thus shown to be fundamentally similar to the mammalian PDC in function but subject to other conditions of possible regulation, conditioned by a steric restrictions imposed by the symmetry of the PDC and its components.


2020 ◽  
Vol 117 (25) ◽  
pp. 14032-14037 ◽  
Author(s):  
Zhen Zhang ◽  
Walter Kob

Disordered systems like liquids, gels, glasses, or granular materials are not only ubiquitous in daily life and in industrial applications, but they are also crucial for the mechanical stability of cells or the transport of chemical and biological agents in living organisms. Despite the importance of these systems, their microscopic structure is understood only on a rudimentary level, thus in stark contrast to the case of gases and crystals. Since scattering experiments and analytical calculations usually give only structural information that is spherically averaged, the three-dimensional (3D) structure of disordered systems is basically unknown. Here, we introduce a simple method that allows probing of the 3D structure of such systems. Using computer simulations, we find that hard sphere-like liquids have on intermediate and large scales a simple structural order given by alternating layers with icosahedral and dodecahedral symmetries, while open network liquids like silica have a structural order with tetrahedral symmetry. These results show that liquids have a highly nontrivial 3D structure and that this structural information is encoded in nonstandard correlation functions.


Author(s):  
А.В. Марченко ◽  
Е.И. Теруков ◽  
Ф.С. Насрединов ◽  
П.П. Серегин

The Mössbauer spectroscopy data on the 119Sn, 121Sb and 125Te isotopes have showed that the structure of germanium atoms local surrounding changes as a result of Ge2Sb2Te5 amorphous films crystallization (tetrahedral symmetry changes to octahedral), while the environment of antimony and tellurium atoms does not change, and for antimony atoms it is close to that in the Sb2Te3 compound.


Sign in / Sign up

Export Citation Format

Share Document