Hydrolysis of phosphate esters bound to cobalt(III). Kinetics and mechanism of intramolecular attack of hydroxide on coordinated 4-nitrophenyl phosphate

1983 ◽  
Vol 105 (25) ◽  
pp. 7327-7336 ◽  
Author(s):  
David R. Jones ◽  
Leonard F. Lindoy ◽  
Alan M. Sargeson
1984 ◽  
Vol 223 (2) ◽  
pp. 323-328 ◽  
Author(s):  
J Van Rinsum ◽  
W Van Dijk ◽  
G J Hooghwinkel ◽  
W Ferwerda

The activities of N-acetylneuraminate 9-phosphate synthase and N-acetylneuraminate 9-phosphatase, the two enzymes involved in the final steps of the biosynthetic pathway of N-acetylneuraminic acid, were measured with the substrates N-acetyl[14C]mannosamine 6-phosphate and N-acetyl[14C]neuraminic acid 9-phosphate respectively. Subcellular localization studies in rat liver indicated that both enzymes are localized in the cytosolic fraction after homogenization in sucrose medium. To test the possibility of misinterpretation due to the hydrolysis of N-acetylneuraminic acid 9-phosphate by non-specific phosphatases, the hydrolysis of various phosphate esters by the cytosolic fraction was tested. Only p-nitrophenyl phosphate was hydrolysed; however, competition studies with N-acetylneuraminic acid 9-phosphate and p-nitrophenyl phosphate indicated that two different enzymes were involved and that no competition existed between the two substrates. In various other rat tissues N-acetylneuraminate-9-phosphate synthase and N-acetylneuraminate 9-phosphatase activities were detected, suggesting that N-acetylmannosamine 6-phosphate is a general precursor for N-acetylneuraminic acid biosynthesis in all the tissues studied.


Parasitology ◽  
1979 ◽  
Vol 79 (3) ◽  
pp. 417-423 ◽  
Author(s):  
Jun Maki ◽  
Toshio Yanagisawa

SUMMARYIntact Angiostrongylus cantonensis is able to hydrolyse glucose-phosphate esters, mononucleotides and p-nitrophenyl phosphate as well as β-glycerophosphate in vitro. Reciprocal inhibition studies suggest that the hydrolysis of such substrates is due to a non-specific phosphomonoesterase. Molybdate ions, which exert no effect on either the uptake of glucose or the production of lactate, inhibit the hydrolysis of glucose-1- phosphate in the external medium and simultaneously lower the production of lactate by the intact worms in vitro.


1975 ◽  
Vol 23 (11) ◽  
pp. 828-839 ◽  
Author(s):  
R Beeuwkes ◽  
S Rosen

The distribution of sodium-potassium adenosine triposphatase (Na-K-ATPase) activity in kidney sections has been studied by a method based on the hydrolysis of p-nitrophenyl phosphate in alkaline medium containing dimethyl sulfoxide. The products at each stage in the reaction sequence have been subjected to electron probe microanalysis. The initial product was identified as a mixture of KMgPO4 and Mg(PO4)2, and sequential analysis demonstrated the linearity of conversion of this product to a visible form. In human, rabbit and rat kidneys the distribution of activity was found to be essentially identical, with highest levels located in thick ascending limbs and distal convoluted tubules. The initial reaction was completely potassium dependent and was inhibited by ouabain in concentrations reflecting the relative sensitivity of microsomal Na-K-ATPase in each species. Measurement of initial product phosphorus by means of the electron probe is presented as a practical technique for direct quantitation of Na-K-ATPase activity in identified tubule segments.


1976 ◽  
Vol 7 (40) ◽  
pp. no-no
Author(s):  
TAE-RIN KIM ◽  
JIN-HEE KIM ◽  
BYUNG-DOO CHANG ◽  
KWANG-IL LEE ◽  
UNG-CHO KIM

Sign in / Sign up

Export Citation Format

Share Document