phosphate synthase
Recently Published Documents


TOTAL DOCUMENTS

1603
(FIVE YEARS 148)

H-INDEX

79
(FIVE YEARS 4)

2022 ◽  
Vol 43 (2) ◽  
pp. 657-674
Author(s):  
Guilherme Mendes Pio de Oliveira ◽  
◽  
Marcelo Augusto de Aguiar e Silva ◽  
Giliardi Dalazen ◽  
◽  
...  

Glyphosate-resistant sourgrass is difficult to control, particularly when perennial, and strategies that improve the control efficiency against this grass and preserve the useful life of graminicides are warranted. Therefore, the present study aimed to answer the following questions: (i) Does fractionating the doses of ACCase inhibitors improve the control of perennial sourgrass? (ii) Does alternating the chemical groups cyclohexanediones (DIMs) and aryloxyphenoxypropanoates (FOPs) improve the control of perennial sourgrass, and does the order of their application affect sourgrass control efficiency? (iii) Does the addition of glyphosate to ACCase inhibitors improve to the control of perennial sourgrass resistant to 5-enol-pyruvyl-shiquime-3-phosphate synthase inhibitors? Two field experiments (I and II) were performed in 2018 and repeated in 2019. In experiment I, the treatments included a single or fractional application clethodim + quizalofop-P-ethyl (216 + 108 g a.i. ha-1), clethodim (216 g a.i. ha-1), and quizalofop-P-tefuryl (108 g a.i. ha-1), applied in the order of clethodim followed by quizalofop-P-tefuryl and vice versa, as well as a control treatment. In experiment II, the treatments included a single or fractional application of clethodim + quizalofop-P-ethyl (216 + 108 g a.i. ha-1) and clethodim (108 g a.i. ha-1), isolated or associated with glyphosate, as well as a control treatment. In both experiments, the interval between the fractional applications was 7 days. Percentage of control, number of tillers per plant, and height of sourgrass plants were determined. Compared with the unfractionated application, the fractionation of clethodim + quizalofop-P-ethyl and clethodim increased control by respectively 20-24 and 25-30%. Fractionated clethodim has greater


Gene ◽  
2022 ◽  
Vol 808 ◽  
pp. 145971
Author(s):  
Tingjun Chen ◽  
Zhimin Li ◽  
Jianyong Liu ◽  
Caifeng Liang

2021 ◽  
Author(s):  
◽  
Yu Bai

<p>Multifunctional enzymes, bearing two or more catalytic activities, provide exceptional contributions to the efficient and coherent function of metabolic pathways. Two main benefits of multifunctional enzymes have been clearly described. Firstly, linked catalytic modules can enhance the overall catalytic rate for consecutive reactions of a metabolic pathway due to substrate channelling. Secondly, the fusion of two protein domains can impart allosteric control, such that the catalytic function of one of the protein domains is altered by a ligand binding to the second, covalently linked domain. This study examines a bifunctional enzyme comprising a 3-deoxy-D-arabino heptulosonate 7-phosphate synthase (DAH7PS) domain covalently fused to a C-terminal chorismate mutase (CM) domain from Prevotella nigrescens (PniDAH7PS). DAH7PS catalyses the first reaction of the shikimate pathway leading to the biosynthesis of aromatic amino acids, whereas CM functions at a pathway branch point, leading to the biosynthesis of tyrosine and phenylalanine. Through the investigation of PniDAH7PS, a special functional interdependence between the two non-consecutive catalytic functionalities and the derived allosteric regulation was unravelled.  Chapter 2 generally characterises the biochemical and structural features of PniDAH7PS. The two catalytic activities exhibit substantial hetero-interdependency and the separation of the two distinct catalytic domains results in a dramatic loss of both the DAH7PS and CM enzymatic activities. The structural investigation into this protein revealed a unique dimeric assembly and implicates a hetero-interaction between the DAH7PS and CM domains, providing a structural basis for the functional interdependence. Moreover, allosteric inhibition of DAH7PS by prephenate, the product of the CM-catalysed reaction, was observed. This allostery is accompanied by a striking conformational change, as observed by SAXS, implying that a manipulation of the hetero-domain interaction is the mechanism underpinning the allosteric inhibition.  Chapter 3 looks into the mechanism underpinning the DAH7PS and CM functional interdependence. Rearrangements of the conformation of PniDAH7PS following the addition of substrate combinations were observed. This indicates that a dynamic interaction between the DAH7PS and CM domains is important for catalysis. Furthermore, perturbation of these conformational variations by either a truncation mutation in the CM domain or the presence of a high concentration of NaCl interrupted the both the DAH7PS and CM catalytic activities, implying that a dynamic hetero-domain interaction is essential for the delivering the normal DAH7PS and CM functions. This work also reveals a dual role for the DAH7PS domain, exerting catalysis and allosteric activation on the CM activity simultaneously.  Chapter 4 investigates the mechanism of the allosteric inhibition of PniDAH7PS by prephenate. The structural effect of prephenate on PniDAH7PS, with the addition of substrate combinations, was inspected, and the results unravelled the same conformation of PniDAH7PS under different conditions, exhibiting high compactness and rigidity. This finding indicates that the probable inhibitory effect of prephenate on PniDAH7PS is realised by freezing the enzyme’s structure in order to deprive PniDAH7PS of the dynamic-dependent catalytic activity.  Chapter 5 describes the development of a method for producing segmentally isotopically labelled PniDAH7PS using Expressed Protein Ligation (EPL). This chapter also details attempts to couple this method with small angle neutron scattering (SANS) and nuclear magnetic resonance spectroscopy (NMR) to gain more structural information regarding the catalytic and allosteric properties of PniDAH7PS.</p>


2021 ◽  
Author(s):  
◽  
Yu Bai

<p>Multifunctional enzymes, bearing two or more catalytic activities, provide exceptional contributions to the efficient and coherent function of metabolic pathways. Two main benefits of multifunctional enzymes have been clearly described. Firstly, linked catalytic modules can enhance the overall catalytic rate for consecutive reactions of a metabolic pathway due to substrate channelling. Secondly, the fusion of two protein domains can impart allosteric control, such that the catalytic function of one of the protein domains is altered by a ligand binding to the second, covalently linked domain. This study examines a bifunctional enzyme comprising a 3-deoxy-D-arabino heptulosonate 7-phosphate synthase (DAH7PS) domain covalently fused to a C-terminal chorismate mutase (CM) domain from Prevotella nigrescens (PniDAH7PS). DAH7PS catalyses the first reaction of the shikimate pathway leading to the biosynthesis of aromatic amino acids, whereas CM functions at a pathway branch point, leading to the biosynthesis of tyrosine and phenylalanine. Through the investigation of PniDAH7PS, a special functional interdependence between the two non-consecutive catalytic functionalities and the derived allosteric regulation was unravelled.  Chapter 2 generally characterises the biochemical and structural features of PniDAH7PS. The two catalytic activities exhibit substantial hetero-interdependency and the separation of the two distinct catalytic domains results in a dramatic loss of both the DAH7PS and CM enzymatic activities. The structural investigation into this protein revealed a unique dimeric assembly and implicates a hetero-interaction between the DAH7PS and CM domains, providing a structural basis for the functional interdependence. Moreover, allosteric inhibition of DAH7PS by prephenate, the product of the CM-catalysed reaction, was observed. This allostery is accompanied by a striking conformational change, as observed by SAXS, implying that a manipulation of the hetero-domain interaction is the mechanism underpinning the allosteric inhibition.  Chapter 3 looks into the mechanism underpinning the DAH7PS and CM functional interdependence. Rearrangements of the conformation of PniDAH7PS following the addition of substrate combinations were observed. This indicates that a dynamic interaction between the DAH7PS and CM domains is important for catalysis. Furthermore, perturbation of these conformational variations by either a truncation mutation in the CM domain or the presence of a high concentration of NaCl interrupted the both the DAH7PS and CM catalytic activities, implying that a dynamic hetero-domain interaction is essential for the delivering the normal DAH7PS and CM functions. This work also reveals a dual role for the DAH7PS domain, exerting catalysis and allosteric activation on the CM activity simultaneously.  Chapter 4 investigates the mechanism of the allosteric inhibition of PniDAH7PS by prephenate. The structural effect of prephenate on PniDAH7PS, with the addition of substrate combinations, was inspected, and the results unravelled the same conformation of PniDAH7PS under different conditions, exhibiting high compactness and rigidity. This finding indicates that the probable inhibitory effect of prephenate on PniDAH7PS is realised by freezing the enzyme’s structure in order to deprive PniDAH7PS of the dynamic-dependent catalytic activity.  Chapter 5 describes the development of a method for producing segmentally isotopically labelled PniDAH7PS using Expressed Protein Ligation (EPL). This chapter also details attempts to couple this method with small angle neutron scattering (SANS) and nuclear magnetic resonance spectroscopy (NMR) to gain more structural information regarding the catalytic and allosteric properties of PniDAH7PS.</p>


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Iqbal ASIF ◽  
Qiang DONG ◽  
Xiangru WANG ◽  
Huiping GUI ◽  
Hengheng ZHANG ◽  
...  

Abstract Background Nitrogen (N) is important for improving various morphological and physiological processes of cotton but their contribution to fiber quality is still lacking. Aims The current study aimed to explore the relationship between root morphology, subtending leaf physiology, and fiber quality of contrasting N-efficient cotton genotypes in response to N. Methods We analyzed the above parameters of CCRI 69 (N-efficient) and Xinluzao-30 (XLZ-30, N-inefficient) under control (2.5 mmol·L−1) and high N (5 mmol·L−1) conditions. Results The results showed that root morphological traits were increased in CCRI-69 under control conditions than high N. Subtending leaf morphology, chlorophyll and carotenoid contents, free amino acids, and soluble proteins were higher under high N as compared with the control. However, soluble sugars, fructose, sucrose contents, and sucrose phosphate synthase were higher under control conditions than high N across the growth stages. Irrespective of the N conditions, all morphological and physiological traits of cotton subtending leaf were higher in CCRI-69 than XLZ-30. Except for fiber uniformity, fiber quality traits like fiber length, strength, micronaire, and elongation were improved under control conditions than high N. Between the genotypes, CCRI-69 had significantly higher fiber length, strength, micronaire, and elongation as compared with XLZ-30. Strong positive correlations were found between root morphology, soluble sugars, sucrose content, and sucrose phosphate synthase activity with fiber quality traits, respectively. Conclusions These findings suggest that CCRI-69 performed better in terms of growth and fiber quality under relatively low N condition, which will help to reduce fertilizer use, the cost of production, and environmental pollution.


Sign in / Sign up

Export Citation Format

Share Document