Intrinsic Rate Constants for Proton Transfer from a Monoketone to Amine Bases and Electrostatic Effects on the Intrinsic Rate Constants for the Deprotonation of Cationic Ketones by OH-

1999 ◽  
Vol 121 (8) ◽  
pp. 1674-1680 ◽  
Author(s):  
Claude F. Bernasconi ◽  
José A. Moreira ◽  
Lisa L. Huang ◽  
Kevin W. Kittredge

2005 ◽  
Vol 70 (19) ◽  
pp. 7721-7730 ◽  
Author(s):  
Claude F. Bernasconi ◽  
Douglas E. Fairchild ◽  
Robert L. Montañez ◽  
Perdram Aleshi ◽  
Huaiben Zheng ◽  
...  


1981 ◽  
Vol 59 (11) ◽  
pp. 1615-1621 ◽  
Author(s):  
Scott D. Tanner ◽  
Gervase I. Mackay ◽  
Diethard K. Bohme

Flowing afterglow measurements are reported which provide rate constants and product identifications at 298 ± 2 K for the gas-phase reactions of OH− with CH3OH, C2H5OH, CH3OCH3, CH2O, CH3CHO, CH3COCH3, CH2CO, HCOOH, HCOOCH3, CH2=C=CH2, CH3—C≡CH, and C6H5CH3. The main channels observed were proton transfer and solvation of the OH−. Hydration with one molecule of H2O was observed either to reduce the rate slightly and lead to products which are the hydrated analogues of the "nude" reaction, or to stop the reaction completely, k ≤ 10−12 cm3 molecule−1 s−1. The reaction of OH−•H2O with CH3—C≡CH showed an uncertain intermediate behaviour.



1979 ◽  
Vol 57 (12) ◽  
pp. 1518-1523 ◽  
Author(s):  
Gervase I. Mackay ◽  
Scott D. Tanner ◽  
Alan C. Hopkinson ◽  
Diethard K. Bohme

Rate constants measured with the flowing afterglow technique at 298 ± 2 K are reported for the proton-transfer reactions of H3O+ with CH2O, CH3CHO, (CH3)2CO, HCOOH, CH3COOH, HCOOCH3, CH3OH, C2H5OH, (CH3)2O, and CH2CO. Dissociative proton-transfer was observed only with CH3COOH. The rate constants are compared with the predictions of various theories for ion–molecule collisions. The protonation is discussed in terms of the energetics and mechanisms of various modes of dissociation.



2021 ◽  
Vol 153 (3) ◽  
Author(s):  
Masataka Kawai ◽  
Robert Stehle ◽  
Gabriele Pfitzer ◽  
Bogdan Iorga

In this study, we aimed to study the role of inorganic phosphate (Pi) in the production of oscillatory work and cross-bridge (CB) kinetics of striated muscle. We applied small-amplitude sinusoidal length oscillations to rabbit psoas single myofibrils and muscle fibers, and the resulting force responses were analyzed during maximal Ca2+ activation (pCa 4.65) at 15°C. Three exponential processes, A, B, and C, were identified from the tension transients, which were studied as functions of Pi concentration ([Pi]). In myofibrils, we found that process C, corresponding to phase 2 of step analysis during isometric contraction, is almost a perfect single exponential function compared with skinned fibers, which exhibit distributed rate constants, as described previously. The [Pi] dependence of the apparent rate constants 2πb and 2πc, and that of isometric tension, was studied to characterize the force generation and Pi release steps in the CB cycle, as well as the inhibitory effect of Pi. In contrast to skinned fibers, Pi does not accumulate in the core of myofibrils, allowing sinusoidal analysis to be performed nearly at [Pi] = 0. Process B disappeared as [Pi] approached 0 mM in myofibrils, indicating the significance of the role of Pi rebinding to CBs in the production of oscillatory work (process B). Our results also suggest that Pi competitively inhibits ATP binding to CBs, with an inhibitory dissociation constant of ∼2.6 mM. Finally, we found that the sinusoidal waveform of tension is mostly distorted by second harmonics and that this distortion is closely correlated with production of oscillatory work, indicating that the mechanism of generating force is intrinsically nonlinear. A nonlinear force generation mechanism suggests that the length-dependent intrinsic rate constant is asymmetric upon stretch and release and that there may be a ratchet mechanism involved in the CB cycle.



Sign in / Sign up

Export Citation Format

Share Document