Ion Guide for Improved Atmosphere to Mass Spectrometer Vacuum Ion Transfer

Author(s):  
Hassan Javaheri ◽  
Bradley B. Schneider
2019 ◽  
Vol 12 (10) ◽  
pp. 5231-5246 ◽  
Author(s):  
Markus Leiminger ◽  
Stefan Feil ◽  
Paul Mutschlechner ◽  
Arttu Ylisirniö ◽  
Daniel Gunsch ◽  
...  

Abstract. Here we present an alternative approach of an atmospheric pressure interface (APi) time-of-flight mass spectrometer for the study of atmospheric ions and cluster ions, the so-called ioniAPi-TOF. The novelty is the use of two hexapoles as ion guides within the APi. In our case, hexapoles can accept and transmit a broad mass range enabling the study of small precursor ions and heavy cluster ions at the same time. Weakly bound cluster ions can easily de-cluster during ion transfer depending on the voltages applied to the ion transfer optics. With the example system of H3O+(H2O)n=0-3, we estimate that cluster ions with higher binding energies than 17 kcal mol−1 can be transferred through the APi without significant fragmentation, which is considerably lower than about 25 kcal mol−1 estimated from the literature for APi-TOFs with quadrupole ion guides. In contrast to the low-fragmenting ion transfer, the hexapoles can be set to a high-fragmenting declustering mode for collision-induced dissociation (CID) experiments as well. The ion transmission efficiency over a broad mass range was determined to be on the order of 1 %, which is comparable to existing instrumentation. From measurements under well-controlled conditions during the CLOUD experiment, we demonstrate the instrument's performance and present results from an inter-comparison with a quadrupole-based APi-TOF.


2020 ◽  
Author(s):  
Markus Sebastian Leiminger ◽  
Tobias Reinecke ◽  
Markus Müller ◽  
Stefan Feil ◽  
Philipp Sulzer ◽  
...  

<p>The recently introduced PTR3-TOF mass spectrometer (Proton Transfer Reaction Time-Of-Flight) allows for a direct and quantitative detection of volatile organic compounds (VOC) and their oxidation products. With a design of the inlet system and the ionization chamber that allows analyte transfer with virtually no wall interactions, organics ranging from volatile to extremely low volatility (ELVOC) can be measured, even at ambient temperature. In addition, PTR3 has recently shown to detect and quantify RO<sub>2 </sub>radicals. Unlike the traditional PTR-MS ionization technique, the PTR3 is operated at an elevated reaction pressure of 50 to 80 mbar while reaction kinetics are precisely defined via radial electric fields emitted from a tripole ion guide. With this setup, outstanding sensitivities of more than 30,000 cps/ppbV are achieved.</p><p>Herein, we present an improved version of a PTR3-TOF instrument. The inlet comprises three cylindrically arranged ion sources allowing for fast electrical switching between a set of reagent ions including H<sub>3</sub>O<sup>+</sup>, NO<sup>+</sup>, O<sub>2</sub><sup>+</sup> and NH<sub>4</sub><sup>+</sup>. The tripole geometry is aerodynamically improved to further reduce surface interactions. Extraction of analyte ions from the PTR3 ionization chamber and subsequent transfer to the TOF mass analyzer is now enhanced by an ion booster in series to a hexapole ion guide. This setup enables a precise control of extraction energies to reduce unwanted collision induced fragmentation and at the same time efficiently transmits ions of a broad m/z range. Analyte ions are analyzed with a high-resolution Time-Of-Flight mass spectrometer achieving mass resolving powers of typically 13,000 to 15,000.</p><p>We have characterized the performance of this optimized PTR3-TOF instrument using pure chemical compounds of intermediate to low volatility, including carboxylic acids and peroxides. Hereby, the effects of PTR3 reaction conditions and ion extraction settings are studied. Monoterpene ozonolysis experiments demonstrate the performance in detecting aerosol precursors from intermediate to extremely low volatility. These new insights in gas phase chemistry are further combined with particle phase measurements conducted with a CHARON PTR-MS to emphasize the analytical capabilities of the PTR3.</p>


1990 ◽  
Vol 42 (2) ◽  
pp. 133-137 ◽  
Author(s):  
A Iivonen ◽  
R Saintola ◽  
K Valli

2019 ◽  
Author(s):  
Markus Leiminger ◽  
Stefan Feil ◽  
Paul Mutschlechner ◽  
Arttu Ylisirniö ◽  
Daniel Gunsch ◽  
...  

Abstract. Here we present an alternative approach of an Atmospheric-Pressure interface (APi) Time-Of-Flight mass spectrometer for the study of atmospheric ions and cluster ions, the so-called ioniAPi-TOF. The novelty is the use of two hexapoles as ion guides within the APi. As we will show, hexapoles can accept and transmit a broad mass range enabling the study of small precursor ions and heavy cluster ions at the same time. Weakly bound cluster ions can easily de-cluster during ion transfer depending on the voltages applied to the ion transfer optics. With the example system of H3O+(H2O)n=0–3, we estimate that cluster ions with higher binding energies than 17 kcal/mol can be transferred through the APi without significant fragmentation, which is considerably lower than about 25 kcal/mol estimated from the literature for APi-TOFs with quadrupole ion guides. In contrast to the low fragmenting ion transfer, the hexapoles can be set to a high fragmenting declustering mode for collision-induced dissociation (CID) experiments as well. The ion transmission efficiency over a broad mass range was determined to be in the order of 1 %, which is comparable to existing instrumentation. From measurements under well-controlled conditions during the CLOUD experiment, we demonstrate the instrument's performance and present results from an inter-comparison with a quadrupole based APi-TOF.


Sign in / Sign up

Export Citation Format

Share Document