inlet system
Recently Published Documents


TOTAL DOCUMENTS

320
(FIVE YEARS 40)

H-INDEX

26
(FIVE YEARS 2)

Author(s):  
L. V. Plotnikov ◽  
Y. M. Brodov ◽  
B. P. Zhilkin ◽  
D. S. Shestakov ◽  
L. E. Osipov

THE PURPOSE. To carry out a comparative analysis of the spectra of gas-dynamic characteristics of flows in the intake systems of piston engines with and without turbocharging, to assess the degree of influence of the turbocharger on the flow structure in such systems, and also to propose a method for the gas-dynamic improvement of processes in the system under consideration. METHODS. Due to the complexity of the object of research, an experimental approach was taken as a basis. The experiments were carried out on a single-cylinder piston engine model, which could be equipped with a turbocharger. A system for collecting and processing experimental data based on an analog-to-digital converter was used in the study. Data on changes in local values of velocity and static pressure of pulsating flows in the intake system during the engine's operating cycle were obtained using a constant temperature hot-wire anemometer and a fast-acting pressure sensor. Spectral analysis of functions of flow velocity and pressure versus time was carried out on the basis of the fast Fourier transform algorithm.RESULTS. The article presents a comparative analysis of the spectra of the amplitudes of the velocity and pressure pulsations in the intake system of an engine with and without turbocharging. Also proposed is a method for stabilizing the pulsating flow in the intake system by installing a leveling grid in the outlet channel of the turbocharger compressor. CONCLUSION. It is shown that the installation of a turbocharger leads to a significant change in the structure of gas flows in the intake system of the engine. It has been established that the presence of a leveling grid in the intake system of a turbocharged piston engine leads to a decrease in the low-frequency amplitudes of the flow velocity and pressure pulsations up to 30%. It is shown that the probability of failure-free operation of an automobile engine (cylinder diameter – 82 mm, piston stroke – 71 mm) increases by almost 1% when a leveling grille is used in the intake system.


2021 ◽  
Author(s):  
Tanya Beck ◽  
Ping Wang

The temporal and spatial scales controlling the morphodynamics of barrier-inlet systems are critical components of regional sediment management practice. This paper discusses regional sediment management methods employed at multiple barrier-inlet systems, with case studies from West-Central Florida. A decision-support tool is proposed for regional sediment management with discussion of its application to barrier-inlet systems. Connecting multiple barrier islands and inlets at appropriate spatio-temporal scales is critical in developing an appropriately scoped sediment management plan for a barrier-inlet system. Evaluating sediment bypassing capacity and overall inlet morphodynamics can better inform regional sand sharing along barrier-inlet coastlines; particularly where sediment resources are scarce and a close coupling between inlet dredging and beach placement is vital to long-term sustainable management. Continued sea-level rise and anthropogenic activities may intensify the need for investigating longer-term processes and expanding regional planning at a centennial timescale and are acknowledged as challenging tasks for RSM studies. Specifically, we suggested that a regionally focused, multi-inlet study was necessary for management plan of individual inlet for the west-central Florida case studies. Key recommendations based on the case studies are included.


2021 ◽  
Vol 31 (3) ◽  
pp. 10-15
Author(s):  
E. S. Pavlova ◽  
◽  
N. M. Blashenkov ◽  
L. N. Gall ◽  
N. R. Gall ◽  
...  

A specialized single channel inlet system has been developed for urea breath tests and scientific studies using Isotope Ratio Mass Spectrometer Helicomass. The system consists of sampling needle, manifold with its purification system, the possibility to introduce sample and standard, high vacuum Mamyrin leak valve to inlet the sample to electron ionization ion source, and the purification procedure including series of sequential pumpings out and blowdowns with compressed nitrogen. The system inlets sample up to 4•10–6 Torr in the mass-spectrometer analytical chamber. The measuring precision was 0.1% for 21 measurements, which meets the test requirements. The measuring time was 15 min per sample including the standard measurement, system purification, the sample measurement, and the second purification. The combination of system and Helicomass mass-spectrometer fits requirements for procedure used to identify infections by Helicobacter pylori.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3755
Author(s):  
Štefan Gašpár ◽  
Tomáš Coranič ◽  
Ján Majerník ◽  
Jozef Husár ◽  
Lucia Knapčíková ◽  
...  

The resulting quality of castings indicates the correlation of the design of the mold inlet system and the setting of technological parameters of casting. In this study, the influence of design solutions of the inlet system in a pressure mold on the properties of Al-Si castings was analyzed by computer modelling and subsequently verified experimentally. In the process of computer simulation, the design solutions of the inlet system, the mode of filling the mold depending on the formation of the casting and the homogeneity of the casting represented by the formation of shrinkages were assessed. In the experimental part, homogeneity was monitored by X-ray analysis by evaluating the integrity of the casting and the presence of pores. Mechanical properties such as permanent deformation and surface hardness of castings were determined experimentally, depending on the height of the inlet notch. The height of the inlet notch has been shown to be a key factor, significantly influencing the properties of the die-cast parts and influencing the speed and filling mode of the mold cavity. At the same time, a significant correlation between porosity and mechanical properties of castings is demonstrated. With the increasing share of porosity, the values of permanent deformation of castings increased. It is shown that the surface hardness of castings does not depend on the integrity of the castings but on the degree of subcooling of the melt in contact with the mold and the formation of a fine-grained structure in the peripheral zones of the casting.


Author(s):  
Clara Markert ◽  
Marco Thinius ◽  
Laura Lehmann ◽  
Chris Heintz ◽  
Florian Stappert ◽  
...  

AbstractElectrospray ionization (ESI) generates bare analyte ions from charged droplets, which result from spraying a liquid in a strong electric field. Experimental observations available in the literature suggest that at least a significant fraction of the initially generated droplets remain large, have long lifetimes, and can thus aspirate into the inlet system of an atmospheric pressure ionization mass spectrometer (API-MS). We report on the observation of fragment signatures from charged droplets penetrating deeply the vacuum stages of three commercial mass spectrometer systems with largely different ion source and spray configurations. Charged droplets can pass through the ion source and pressure reduction stages and even into the mass analyzer region. Since droplet signatures were found in all investigated instruments, the incorporation of charged droplets is considered a general phenomenon occurring with common spray conditions in ESI sources.


2021 ◽  
Vol 21 (11) ◽  
pp. 8933-8959
Author(s):  
Linn Karlsson ◽  
Radovan Krejci ◽  
Makoto Koike ◽  
Kerstin Ebell ◽  
Paul Zieger

Abstract. To constrain uncertainties in radiative forcings associated with aerosol–cloud interactions, improved understanding of Arctic cloud formation is required, yet long-term measurements of the relevant cloud and aerosol properties remain sparse. We present the first long-term study of cloud residuals, i.e. particles that were involved in cloud formation and cloud processes, in Arctic low-level clouds measured at Zeppelin Observatory, Svalbard. To continuously sample cloud droplets and ice crystals and separate them from non-activated aerosol, a ground-based counter-flow virtual impactor inlet system (GCVI) was used. A detailed evaluation of the GCVI measurements, using concurrent cloud particle size distributions, meteorological parameters, and aerosol measurements, is presented for both warm and cold clouds, and the potential contribution of sampling artefacts is discussed in detail. We find an excellent agreement of the GCVI sampling efficiency of liquid clouds using two independent approaches. The 2-year data set of cloud residual size distributions and number concentrations reveals that the cloud residuals follow the typical seasonal cycle of Arctic aerosol, with a maximum concentration in spring and summer and a minimum concentration in the late autumn and winter months. We observed average activation diameters in the range of 58–78 nm for updraught velocities below 1 m s−1. A cluster analysis also revealed cloud residual size distributions that were dominated by Aitken mode particles down to around 20–30 nm. During the winter months, some of these small particles may be the result of ice, snow, or ice crystal shattering artefacts in the GCVI inlet; however, cloud residuals down to 20 nm in size were also observed during conditions when artefacts are less likely.


2021 ◽  
Vol 14 (3) ◽  
pp. 2515-2527
Author(s):  
Benjamin Birner ◽  
William Paplawsky ◽  
Jeffrey Severinghaus ◽  
Ralph F. Keeling

Abstract. The atmospheric He/N2 ratio is expected to increase due to the emission of He associated with fossil fuels and is expected to also vary in both space and time due to gravitational separation in the stratosphere. These signals may be useful indicators of fossil fuel exploitation and variability in stratospheric circulation, but direct measurements of He/N2 ratio are lacking on all timescales. Here we present a high-precision custom inlet system for mass spectrometers that continuously stabilizes the flow of gas during sample–standard comparison and removes all non-noble gases from the gas stream. This enables unprecedented accuracy in measurement of relative changes in the helium mole fraction, which can be directly related to the 4He/N2 ratio using supplementary measurements of O2/N2, Ar/N2 and CO2. Repeat measurements of the same combination of high-pressure tanks using our inlet system achieves a He/N2 reproducibility of ∼ 10 per meg (i.e., 0.001 %) in 6–8 h analyses. This compares to interannual changes of gravitational enrichment at ∼ 35 km in the midlatitude stratosphere of order 300–400 per meg and an annual tropospheric increase from human fossil fuel activity of less than ∼ 30 per meg yr−1 (bounded by previous work on helium isotopes). The gettering and flow-stabilizing inlet may also be used for the analysis of other noble-gas isotopes and could resolve previously unobserved seasonal cycles in Kr/N2 and Xe/N2.


Sign in / Sign up

Export Citation Format

Share Document