resonance ionization
Recently Published Documents


TOTAL DOCUMENTS

656
(FIVE YEARS 41)

H-INDEX

40
(FIVE YEARS 4)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alfredo Galindo-Uribarri ◽  
Yuan Liu ◽  
Elisa Romero Romero ◽  
Daniel W. Stracener

AbstractThree-step resonance photoionization spectra of plutonium have been studied with Ti:Sapphire lasers for the development of efficient laser ionization schemes for ultra-trace analysis of Pu isotopes by resonance ionization mass spectrometry. We observed eighteen intermediate excited states of even parity in the energy range 35568–36701 $${\text {cm}}^{-1}$$ cm - 1 , thirteen of them have not been previously documented, and a larger number of high-lying excited states and autoionizing states of odd-parity between 48238 and 49510 $${\text {cm}}^{-1}$$ cm - 1 . Three-color, three-photon ionization schemes via six intermediate states were evaluated under similar ion source operating conditions. This led to a highly efficient three-step scheme with an overall ionization efficiency of $$51.1 \pm 1.3\%$$ 51.1 ± 1.3 % , which is an order of magnitude improvement over the previously reported ionization efficiency for Pu.


2021 ◽  
Vol 8 ◽  
Author(s):  
Vadim Maratovich Gadelshin ◽  
Roberto Formento Cavaier ◽  
Ferid Haddad ◽  
Reinhard Heinke ◽  
Thierry Stora ◽  
...  

Terbium (Tb) is a promising element for the theranostic approach in nuclear medicine. The new CERN-MEDICIS facility aims for production of its medical radioisotopes to support related R&D projects in biomedicine. The use of laser resonance ionization is essential to provide radioisotopic yields of highest quantity and quality, specifically regarding purity. This paper presents the results of preparation and characterization of a suitable two-step laser resonance ionization process for Tb. By resonance excitation via an auto-ionizing level, the high ionization efficiency of 53% was achieved. To simulate realistic production conditions for Tb radioisotopes, the influence of a surplus of Gd atoms, which is a typical target material for Tb generation, was considered, showing the necessity of radiochemical purification procedures before mass separation. Nevertheless, a 10-fold enhancement of the Tb ion beam using laser resonance ionization was observed even with Gd:Tb atomic ratio of 100:1.


2021 ◽  
Vol 8 ◽  
Author(s):  
Reinhard Heinke ◽  
Eric Chevallay ◽  
Katerina Chrysalidis ◽  
Thomas E. Cocolios ◽  
Charlotte Duchemin ◽  
...  

Thulium-167 is a promising radionuclide for nuclear medicine applications with potential use for both diagnosis and therapy (“theragnostics”) in disseminated tumor cells and small metastases, due to suitable gamma-line as well as conversion/Auger electron energies. However, adequate delivery methods are yet to be developed and accompanying radiobiological effects to be investigated, demanding the availability of 167Tm in appropriate activities and quality. We report herein on the production of radionuclidically pure 167Tm from proton-irradiated natural erbium oxide targets at a cyclotron and subsequent ion beam mass separation at the CERN-MEDICIS facility, with a particular focus on the process efficiency. Development of the mass separation process with studies on stable 169Tm yielded 65 and 60% for pure and erbium-excess samples. An enhancement factor of thulium ion beam over that of erbium of up to several 104 was shown by utilizing laser resonance ionization and exploiting differences in their vapor pressures. Three 167Tm samples produced at the IP2 irradiation station, receiving 22.8 MeV protons from Injector II at Paul Scherrer Institute (PSI), were mass separated with collected radionuclide efficiencies between 11 and 20%. Ion beam sputtering from the collection foils was identified as a limiting factor. In-situ gamma-measurements showed that up to 45% separation efficiency could be fully collected if these limits are overcome. Comparative analyses show possible neighboring mass suppression factors of more than 1,000, and overall 167Tm/Er purity increase in the same range. Both the actual achieved collection and separation efficiencies present the highest values for the mass separation of external radionuclide sources at MEDICIS to date.


2021 ◽  
Author(s):  
Tian Xia ◽  
Tong-Yan Xia ◽  
Wei-Wei Sun ◽  
Wei Jiang ◽  
Zheng-Tian Lu

<p>On earth, Calcium-41 is produced as a cosmogenic isotope via neutron capture process, leaving a natural isotopic abundance of 10<sup>-15</sup> on earth surface. Calcium is also of vital importance for the metabolism of biological organisms. Consequently, analysis of the long lived radioactive isotope Calcium-41 is of great importance in geoscience, archeology and life sciences. The half-life of Calcium-41 is 1.03 x 10<sup>5</sup> years. It is a good candidate in dating rock and bone samples ranging from 50,000 to 1,000,000 years old.</p><p>The available techniques for trace analysis of Calcium-41 include accelerator mass spectrometry (AMS) and resonance ionization mass spectroscopy (RIMS). The detection limit of RIMS is on the level of 10<sup>-11 </sup>due to the interference of Potassium-41, which is difficult to remove from the sample. The analysis with high-energy AMS is more expensive than the table top apparatus, and it also faces similar problem as RIMS method.</p><p>We develop an atom trap trace analysis(ATTA) apparatus for Calcium-41 analysis to the sensitivity of 10<sup>-15</sup> abundance level by one hour of single atom counting. ATTA uses laser tuned at the resonant wavelength for a specific element and isotope to slow down and capture single atom by fluorescence radiation. It has a very high selectivity of element and isotope, which is more advantageous than AMS and RIMS to avoid isobar interference. ATTA has been used in analysis of Krypton-81, Argon-39 dating of the hydrological samples. This work on high sensitivity Calcium-41 analysis is very promising in dating the geochemical sample to determine the exposure ages of rocks or in cosmochemistry for investigations on terrestrial ages.</p>


Author(s):  
Á. Koszorús ◽  
X. F. Yang ◽  
W. G. Jiang ◽  
S. J. Novario ◽  
S. W. Bai ◽  
...  

AbstractNuclear charge radii are sensitive probes of different aspects of the nucleon–nucleon interaction and the bulk properties of nuclear matter, providing a stringent test and challenge for nuclear theory. Experimental evidence suggested a new magic neutron number at N = 32 (refs. 1–3) in the calcium region, whereas the unexpectedly large increases in the charge radii4,5 open new questions about the evolution of nuclear size in neutron-rich systems. By combining the collinear resonance ionization spectroscopy method with β-decay detection, we were able to extend charge radii measurements of potassium isotopes beyond N = 32. Here we provide a charge radius measurement of 52K. It does not show a signature of magic behaviour at N = 32 in potassium. The results are interpreted with two state-of-the-art nuclear theories. The coupled cluster theory reproduces the odd–even variations in charge radii but not the notable increase beyond N = 28. This rise is well captured by Fayans nuclear density functional theory, which, however, overestimates the odd–even staggering effect in charge radii. These findings highlight our limited understanding of the nuclear size of neutron-rich systems, and expose problems that are present in some of the best current models of nuclear theory.


Sign in / Sign up

Export Citation Format

Share Document