Effect of the leaving group in the hydrolysis of N-acylimidazoles. The hydroxide ion, water, and general-base catalyzed hydrolysis of N-acyl-4(5)-nitroimidazoles

1987 ◽  
Vol 52 (5) ◽  
pp. 740-746 ◽  
Author(s):  
Thomas H. Fife ◽  
R. Natarajan ◽  
Milton H. Werner
1971 ◽  
Vol 124 (1) ◽  
pp. 117-122 ◽  
Author(s):  
G. Lowe ◽  
Y. Yuthavong

The pH-dependence of the Michaelis–Menten parameters for the papain-catalysed hydrolysis of N-acetyl-l-phenylalanylglycine p-nitroanilide was determined. The equilibrium binding constant, Ks, is independent of pH between 3.7 and 9.3, whereas the acylation constant, k+2, shows bell-shaped pH-dependence with apparent pKa values of 4.2 and 8.2. The effect of substituents in the leaving group on the acylation constant of the papain-catalysed hydrolysis of hippuryl anilides and N-acetyl-l-phenylalanylglycine anilides gives rise in both series to a Hammett ρ value of -1.04. This indicates that the enzyme provides electrophilic, probably general-acid, catalysis, as well as the nucleophilic or general-base catalysis previously found. A mechanism involving a tetrahedral intermediate whose formation is general-base-catalysed and whose breakdown is general-acid-catalysed seems most likely. The similarity of the Hammett ρ values appears to exclude facilitated proton transfer as a means through which the specificity of papain is expressed.


1986 ◽  
Vol 51 (12) ◽  
pp. 2781-2785 ◽  
Author(s):  
M. Martín Herrera ◽  
J. J. Maraver Puig ◽  
F. Sánchez Burgos

A study is made on the kinetic salt effect on the reaction of hydrolysis of several charged esters in alkaline media. The results are interpreted on the basis of the coulombic interaction, the salting in of hydroxide ion and a third component depending on size of the substrate.


2020 ◽  
Author(s):  
Shreya Ghosh ◽  
Anam Ejaz ◽  
Lucas Repeta ◽  
Stewart Shuman

Abstract Pseudomonas putida MPE exemplifies a novel clade of manganese-dependent single-strand DNA endonuclease within the binuclear metallophosphoesterase superfamily. MPE is encoded within a widely conserved DNA repair operon. Via structure-guided mutagenesis, we identify His113 and His81 as essential for DNA nuclease activity, albeit inessential for hydrolysis of bis-p-nitrophenylphosphate. We propose that His113 contacts the scissile phosphodiester and serves as a general acid catalyst to expel the OH leaving group of the product strand. We find that MPE cleaves the 3′ and 5′ single-strands of tailed duplex DNAs and that MPE can sense and incise duplexes at sites of short mismatch bulges and opposite a nick. We show that MPE is an ambidextrous phosphodiesterase capable of hydrolyzing the ssDNA backbone in either orientation to generate a mixture of 3′-OH and 3′-PO4 cleavage products. The directionality of phosphodiester hydrolysis is dictated by the orientation of the water nucleophile vis-à-vis the OH leaving group, which must be near apical for the reaction to proceed. We propose that the MPE active site and metal-bound water nucleophile are invariant and the enzyme can bind the ssDNA productively in opposite orientations.


1982 ◽  
Vol 35 (7) ◽  
pp. 1357 ◽  
Author(s):  
TJ Broxton

The hydrolysis of 2-acetyloxybenzoic acid in the pH range 6-12 has been studied in the presence of micelles of cetyltrimethylammonium bromide (ctab) and cetylpyridinium chloride (cpc). In the plateau region (pH 6-8) the hydrolysis is inhibited by the presence of micelles, while in the region where the normal BAC2 hydrolysis (pH > 9) occurs the reaction is catalysed by micelles of ctab and cpc. The mechanism of hydrolysis in the plateau region is shown to involve general base catalysis by the adjacent ionized carboxy group both in the presence and absence of micelles. This reaction is inhibited in the presence of micelles because the substrate molecules are solubilized into the micelle and water is less available in this environment than in normal aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document