scholarly journals Circular Dichroism and Ultraviolet Resonance Raman Indicate Little Arg-Glu Side Chain α-Helix Peptide Stabilization

2011 ◽  
Vol 115 (14) ◽  
pp. 4234-4243 ◽  
Author(s):  
Zhenmin Hong ◽  
Zeeshan Ahmed ◽  
Sanford A. Asher
2015 ◽  
Author(s):  
◽  
Olayinka Oshokoya

Determination of protein secondary structure has become an area of great importance in biochemistry and biophysics as protein secondary structure is directly related to protein function and protein related diseases. While NMR and x-ray crystallography can predict placement of each atom in proteins to within an angstrom, optical methods are the preferred techniques for rapid evaluation of protein secondary structure content. Such techniques require calibration data to predict unknown protein secondary structure content where accuracy may be improved with the application of multivariate analysis. We compare protein secondary structure predictions obtained from multivariate analysis of ultraviolet resonance Raman (UVRR) and circular dichroism (CD) spectroscopic data using classical and partial least squares, and multivariate curve resolution-alternating least squares is made. Based on this analysis, the suggested best approach to rapid and accurate secondary structure determination is a combination of both CD and UVRR spectroscopy. While initial studies suggest that a complementary use of spectroscopic data from optical methods such as circular dichroism (CD), infrared (IR) and ultraviolet resonance Raman (UVRR) coupled with multivariate calibration techniques like multivariate curve resolution-alternating least squares (MCR-ALS) is the preferred route for real-time and accurate evaluation of protein secondary structure, further study presents a new strategy for the improvement of secondary structure determination of proteins by fusing CD and UVRR spectroscopic data. Also, a new method for determining the structural composition of each protein is employed, which is based on the relative abundance of the (phi,psi) dihedral angles of the peptide backbone as they correspond to each type of secondary structure. Comparison of the predicted protein secondary structures from MCR-ALS analysis of CD, UVRR and fused data with definitions obtained from dihedral angles of the peptide backbone, yields lower overall root mean squared errors of calibration for helical, sheet, poly-proline II type and total unfolded secondary structures with fused data. Considering that a disadvantage of multivariate calibration methods is the requirement of known concentration or spectral profiles, and second-order calibration methods, such as parallel factor analysis (PARAFAC), do not have such a requirement due to the "second-order advantage", PARAFAC was employed for analysis of UVRR data. An exceptional feature of UVRR spectroscopy is that UVRR spectra are also dependent on excitation wavelength as they are on secondary structure composition. Thus, higher order data can be created by combining protein UVRR spectra of several proteins collected at multiple excitation wavelengths. PARAFAC has been used to analyze UVRR data collected at multiple excitation wavelengths on several proteins to determine secondary structure content.


2019 ◽  
Vol 26 (7) ◽  
pp. 532-541 ◽  
Author(s):  
Cadena-Cadena Francisco ◽  
Cárdenas-López José Luis ◽  
Ezquerra-Brauer Josafat Marina ◽  
Cinco-Moroyoqui Francisco Javier ◽  
López-Zavala Alonso Alexis ◽  
...  

Background: Cathepsin D is a lysosomal enzyme that is found in all organisms acting in protein turnover, in humans it is present in some types of carcinomas, and it has a high activity in Parkinson's disease and a low activity in Alzheimer disease. In marine organisms, most of the research has been limited to corroborate the presence of this enzyme. It is known that cathepsin D of some marine organisms has a low thermostability and that it has the ability to have activity at very acidic pH. Cathepsin D of the Jumbo squid (Dosidicus gigas) hepatopancreas was purified and partially characterized. The secondary structure of these enzymes is highly conserved so the role of temperature and pH in the secondary structure and in protein denaturation is of great importance in the study of enzymes. The secondary structure of cathepsin D from jumbo squid hepatopancreas was determined by means of circular dichroism spectroscopy. Objective: In this article, our purpose was to determine the secondary structure of the enzyme and how it is affected by subjecting it to different temperature and pH conditions. Methods: Circular dichroism technique was used to measure the modifications of the secondary structure of cathepsin D when subjected to different treatments. The methodology consisted in dissecting the hepatopancreas of squid and freeze drying it. Then a crude extract was prepared by mixing 1: 1 hepatopancreas with assay buffer, the purification was in two steps; the first step consisted of using an ultrafiltration membrane with a molecular cut of 50 kDa, and the second step, a pepstatin agarose resin was used to purification the enzyme. Once the enzyme was purified, the purity was corroborated with SDS PAGE electrophoresis, isoelectric point and zymogram. Circular dichroism is carried out by placing the sample with a concentration of 0.125 mg / mL in a 3 mL quartz cell. The results were obtained in mdeg (millidegrees) and transformed to mean ellipticity per residue, using 111 g/mol molecular weight/residue as average. Secondary-structure estimation from the far-UV CD spectra was calculated using K2D Dichroweb software. Results: It was found that α helix decreases at temperatures above 50 °C and above pH 4. Heating the enzyme above 70°C maintains a low percentage of α helix and increases β sheet. Far-UV CD measurements of cathepsin D showed irreversible thermal denaturation. The process was strongly dependent on the heating rate, accompanied by a process of oligomerization of the protein that appears when the sample is heated, and maintained a certain time at this temperature. An amount typically between 3 and 4% α helix of their secondary structure remains unchanged. It is consistent with an unfolding process kinetically controlled due to the presence of an irreversible reaction. The secondary structure depends on pH, and a pH above 4 causes α helix structures to be modified. Conclusion: In conclusion, cathepsin D from jumbo squid hepatopancreas showed retaining up to 4% α helix at 80°C. The thermal denaturation of cathepsin D at pH 3.5 is under kinetic control and follows an irreversible model.


1985 ◽  
Vol 63 (11) ◽  
pp. 1167-1175 ◽  
Author(s):  
Charles G. Suhayda ◽  
Alfred Haug

At a molar excess of [citrate]/[aluminum], this organic acid can protect calmodulin from aluminum binding if the metal is presented to the protein in stoichiometric micromolar quantities, as judged by fluorescence and circular dichroism spectroscopy. Similar citrate concentrations are also capable of fully restoring calmodulin's hydrophobic surface exposure to that of the native protein when calmodulin was initially damaged by aluminum binding. Fluoride anions are equally effective in restoring calmodulin's native structure as determined by fluorescence spectroscopy. Measurements of the kinetics of citrate-mediated aluminum removal also indicated that the metal ions are completely removed from calmodulin, consistent with results derived from atomic absorption experiments. On the other hand, results from circular dichroism studies indicated that citrate-mediated aluminum removal from calmodulin can only partially restore the α-helix content to that originally present in apocalmodulin or in calcium–calmodulin, dependent upon the absence or presence of calcium ions. The results that chelators like citrate can protect calmodulin from aluminum injury may provide a conceptual understanding of physiological observations regarding aluminum-tolerant plant species which are generally rich in certain organic acids.


Author(s):  
András Micsonai ◽  
Éva Bulyáki ◽  
József Kardos

Abstract Far-UV circular dichroism (CD) spectroscopy is a classical method for the study of the secondary structure of polypeptides in solution. It has been the general view that the α-helix content can be estimated accurately from the CD spectra. However, the technique was less reliable to estimate the β-sheet contents as a consequence of the structural variety of the β-sheets, which is reflected in a large spectral diversity of the CD spectra of proteins containing this secondary structure component. By taking into account the parallel or antiparallel orientation and the twist of the β-sheets, the Beta Structure Selection (BeStSel) method provides an improved β-structure determination and its performance is more accurate for any of the secondary structure types compared to previous CD spectrum analysis algorithms. Moreover, BeStSel provides extra information on the orientation and twist of the β-sheets which is sufficient for the prediction of the protein fold. The advantage of CD spectroscopy is that it is a fast and inexpensive technique with easy data processing which can be used in a wide protein concentration range and under various buffer conditions. It is especially useful when the atomic resolution structure is not available, such as the case of protein aggregates, membrane proteins or natively disordered chains, for studying conformational transitions, testing the effect of the environmental conditions on the protein structure, for verifying the correct fold of recombinant proteins in every scientific fields working on proteins from basic protein science to biotechnology and pharmaceutical industry. Here, we provide a brief step-by-step guide to record the CD spectra of proteins and their analysis with the BeStSel method.


Biopolymers ◽  
2000 ◽  
Vol 57 (2) ◽  
pp. 77-84 ◽  
Author(s):  
Junwei Zheng ◽  
Shuyu Ye ◽  
Tianhong Lu ◽  
Therese M. Cotton ◽  
George Chumanov

Sign in / Sign up

Export Citation Format

Share Document