Theory and Modeling of Plasmonic Structures

2012 ◽  
Vol 117 (5) ◽  
pp. 1983-1994 ◽  
Author(s):  
Stephen K. Gray
Nanophotonics ◽  
2020 ◽  
Vol 9 (14) ◽  
pp. 4233-4252
Author(s):  
Yael Gutiérrez ◽  
Pablo García-Fernández ◽  
Javier Junquera ◽  
April S. Brown ◽  
Fernando Moreno ◽  
...  

AbstractReconfigurable plasmonics is driving an extensive quest for active materials that can support a controllable modulation of their optical properties for dynamically tunable plasmonic structures. Here, polymorphic gallium (Ga) is demonstrated to be a very promising candidate for adaptive plasmonics and reconfigurable photonics applications. The Ga sp-metal is widely known as a liquid metal at room temperature. In addition to the many other compelling attributes of nanostructured Ga, including minimal oxidation and biocompatibility, its six phases have varying degrees of metallic character, providing a wide gamut of electrical conductivity and optical behavior tunability. Here, the dielectric function of the several Ga phases is introduced and correlated with their respective electronic structures. The key conditions for optimal optical modulation and switching for each Ga phase are evaluated. Additionally, we provide a comparison of Ga with other more common phase-change materials, showing better performance of Ga at optical frequencies. Furthermore, we first report, to the best of our knowledge, the optical properties of liquid Ga in the terahertz (THz) range showing its broad plasmonic tunability from ultraviolet to visible-infrared and down to the THz regime. Finally, we provide both computational and experimental evidence of extension of Ga polymorphism to bidimensional two-dimensional (2D) gallenene, paving the way to new bidimensional reconfigurable plasmonic platforms.


ACS Photonics ◽  
2021 ◽  
Author(s):  
Zhou Zeng ◽  
Prabhu K. Venuthurumilli ◽  
Xianfan Xu

1994 ◽  
Vol 343 ◽  
Author(s):  
S.C. Wardle ◽  
B.L. Adams ◽  
C.S. Nichols ◽  
D.A. Smith

ABSTRACTIt is well known from studies of individual interfaces that grain boundaries exhibit a spectrum of properties because their structure is misorientation dependent. Usually this variability is neglected and properties are modeled using a mean field approach. The limitations inherent in this approach can be overcome, in principle, using a combination of experimental techniques, theory and modeling. The bamboo structure of an interconnect is a particularly simple polycrystalline structure that can now be readily characterized experimentally and modeled in the computer. The grain misorientations in a [111] textured aluminum line have been measured using the new automated technique of orientational imaging microscopy. By relating boundary angle to diffusivity the expected stress voiding failure processes can be predicted through the link between misorientation angle, grain boundary excess free energy and diffusivity. Consequently it can be shown that the high energy boundaries are the favored failure sites thermodynamically and kinetically.


2015 ◽  
Vol 178 ◽  
pp. 395-412 ◽  
Author(s):  
T. U. Tumkur ◽  
J. K. Kitur ◽  
C. E. Bonner ◽  
A. N. Poddubny ◽  
E. E. Narimanov ◽  
...  

Optical cavities, plasmonic structures, photonic band crystals and interfaces, as well as, generally speaking, any photonic media with homogeneous or spatially inhomogeneous dielectric permittivity (including metamaterials) have local densities of photonic states, which are different from that in vacuum. These modified density of states environments are known to control both the rate and the angular distribution of spontaneous emission. In the present study, we question whether the proximity to metallic and metamaterial surfaces can affect other physical phenomena of fundamental and practical importance. We show that the same substrates and the same nonlocal dielectric environments that boost spontaneous emission, also inhibit Förster energy transfer between donor and acceptor molecules doped into a thin polymeric film. This finding correlates with the fact that in dielectric media, the rate of spontaneous emission is proportional to the index of refractionn, while the rate of the donor–acceptor energy transfer (in solid solutions with a random distribution of acceptors) is proportional ton−1.5. This heuristic correspondence suggests that other classical and quantum phenomena, which in regular dielectric media depend onn, can also be controlled with custom-tailored metamaterials, plasmonic structures, and cavities.


2011 ◽  
Vol 19 (16) ◽  
pp. 15281 ◽  
Author(s):  
Winston Frias ◽  
Andrei Smolyakov ◽  
Akira Hirose

2012 ◽  
Vol 37 (16) ◽  
pp. 3453 ◽  
Author(s):  
O. S. Ahmed ◽  
M. H. Bakr ◽  
X. Li ◽  
T. Nomura

Sign in / Sign up

Export Citation Format

Share Document