UV Photochemistry of Benzene and Cyclohexadienyl Radical in Solid Parahydrogen

2015 ◽  
Vol 119 (11) ◽  
pp. 2683-2691 ◽  
Author(s):  
Shin Yi Toh ◽  
Pavle Djuricanin ◽  
Takamasa Momose ◽  
Jun Miyazaki
1967 ◽  
Vol 45 (12) ◽  
pp. 1831-1839 ◽  
Author(s):  
W. F. Forbes ◽  
P. D. Sullivan

Polycrystalline amino acids, when irradiated with 2537 Å light, afford a variety of electron spin resonance signals. These signals are generally stable at room temperature for relatively long periods of time. For a number of the spectra obtained, there is evidence that more than one radical species contributes to the observed spectra. The signals obtained frequently differ from those obtained on exposure to ionizing radiation. The postulated species formed can often be visualized as being formed by effective hydrogen abstraction from the alkyl-substituted tertiary carbon atom or from the —OH, —SH or —NH group contained in the side chain. For L-phenylalanine a secondary radical is obtained, which is ascribed to a cyclohexadienyl radical.


2014 ◽  
Vol 551 ◽  
pp. 012044 ◽  
Author(s):  
J Xiao ◽  
D J Arseneau ◽  
M D Bridges ◽  
D Cortie ◽  
S P Cottrell ◽  
...  

2002 ◽  
Vol 8 (6) ◽  
pp. 435-445 ◽  
Author(s):  
T.A. Molenaar-Langeveld ◽  
A.M. van der Burg ◽  
S. Ingemann

The loss of ammonia from the metastable molecular ions of cyclic cyano compounds has been examined with the use of deuterium labeling and tandem mass spectrometry. Loss of ammonia is significant for ionized cyanocyclohexane, 1-methyl-, 4-methyl-, 4-cyano-and 4-phenyl-cyanocyclohexanes, 4-cyanopiperidine, cyanocycloheptane and 2-cyanonorbornane. By contrast, loss of ammonia is of minor importance (or absent) for the molecular ions of cyanocyclopentane, 2-methyl-cyanocyclohexane, 1-phenyl-cyanocyclohexane, 1-cyanocyclohexene, 4-cyanotetrahydrothiopyran, 2-cyano-5-norbornene and isocyanocyclohexane. Deuterium labeling of cyanocyclohexane reveals the occurrence of an H-shift from the 4-position to the cyano function, followed by a 1,2-H shift from the 1-position to the C-atom of the newly-formed–CNH group. Subsequently, a series of H-shifts leads to a distonic ion that is formulated as an N-protonated methylamine attached to a cyclohexadienyl radical. Loss of ammonia ensues and leads to ionized toluene as indicated by collision-induced dissociation experiments. For 4-phenyl-cyanocyclohexane, the metastable ions of the cis- and trans-isomers display, essentially, the same unimolecular chemistry. Briefly, the labeling of 4-phenyl-cyanocyclohexane indicates the following: (i) the H atom at the 4-position of the cyclohexane ring is incorporated, to a minor extent, in the ammonia molecule, (ii) loss of NHD2 predominates in the reactions of the molecular ions of 2,2,6,6-d4-4-phenyl-cyanocyclohexane and (iii) the ionized 3,3,5-d3-labeled species expels mainly NH2D. In addition, the metastable molecular ions of the 4-[d5-phenyl]-cyanocyclohexane expel NH3 and NH2D in a ratio of 35:65. A mechanistic scheme is proposed that is consistent with the labeling results for 4-phenyl-cyanocyclohexane as well as the indicated formation of ionized 4-methylbiphenyl as the product ion of ammonia loss.


Sign in / Sign up

Export Citation Format

Share Document