porous silica
Recently Published Documents


TOTAL DOCUMENTS

2089
(FIVE YEARS 343)

H-INDEX

82
(FIVE YEARS 10)

ACS Omega ◽  
2021 ◽  
Author(s):  
Xiaoyan Sun ◽  
Ke Wang ◽  
Hailu Liu ◽  
Yang Zhao ◽  
Yuan Li ◽  
...  
Keyword(s):  

Author(s):  
Le Thi Duy Hanh

The aim of this work was to strengthen the evidence of using micro diatom frustule as a promising candidate for drug loading materials for both hydrophobic and hydrophilic drug models. The morphological, surface elemental composition of diatomite powder, a raw source of micro diatom frustules and purified diatomite to collect micro diatom frustule were investigated. Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) confirmed again the porous silica structure of micro diatom structure as well as validated a necessity of raw diatomite purification before using. UV- vis was used to measure drug loading content of untreated and treated surface of micro diatom frustule with maximum loading for hydrophobic and hydrophilic drugs after 24 hours were at 5.48 ± 0.42% and 5.70 ± 0.34, respectively. Moreover, we also proved that the ability of drug adsorption on materials surface by the reduction of specific surface area and pore size of micro diatom frustule after loading using a (Brunauer–Emmett–Teller) BET method. Besides, the hydrophobic loading capacity of materials was affected by surface modification. Based on the results, micro diatom frustule showed a potential for a drug delivery system.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2095
Author(s):  
Jelena Mudrić ◽  
Katarina Šavikin ◽  
Ljiljana Đekić ◽  
Stefan Pavlović ◽  
Ivana Kurćubić ◽  
...  

Gentian (Gentiana lutea L., Gentianaceae) root extract (GRE) is used for the treatment of gastrointestinal disorders. However, its bioactive potential is limited in conventional forms due to the low bioavailability and short elimination half-life of the dominant bioactive compound, gentiopicroside. The aim of study was to encapsulate GRE in the lipid-based gastroretentive delivery system that could provide high yield and encapsulation efficiency, as well as the biphasic release of gentiopicroside from the tablets obtained by direct compression. Solid lipid microparticles (SLM) loaded with GRE were prepared by freeze-drying double (W/O/W) emulsions, which were obtained by a multiple emulsion–melt dispersion technique, with GRE as the inner water phase, Gelucire® 39/01 or 43/01, as lipid components, with or without the addition of porous silica (Sylysia® 350) in the outer water phase. Formulated SLM powders were examined by SEM and mercury intrusion porosimetry, as well as by determination of yield, encapsulation efficiency, and flow properties. Furthermore, in vitro dissolution of gentiopicroside, the size of the dispersed systems, mechanical properties, and mucoadhesion of tablets obtained by direct compression were investigated. The results have revealed that SLM with the macroporous structure were formulated, and, consequently, the powders floated immediately in the acidic medium. Formulation with porous silica (Sylysia® 350) and Gelucire® 43/01 as a solid lipid was characterized with the high yield end encapsulation efficiency. Furthermore, the mucoadhesive properties of tablets obtained by direct compression of that formulation, as well as the biphasic release of gentiopicroside, presence of nanoassociates in dissolution medium, and optimal mechanical properties indicated that a promising lipid-based gastroretentive system for GRE was developed.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7378
Author(s):  
Kalina Grzelak ◽  
Maciej Trejda

The design of different bimetallic catalysts is an important area of catalytic research in the context of their possible applications in the cascade processes, meeting the requirements of the so-called green chemistry. In this study, such catalysts were obtained by the incorporation of magnesium species into spherical silica, which was in the next step covered with porous silica and modified with ruthenium species. The structure and chemical composition of the materials obtained were determined by XRD measurements, low temperature N2 adsorption/desorption, SEM, ICP-OES and XPS methods. The catalytic activities of materials obtained were tested in 2-propanol decomposition and hydrogenation of levulinic acid. The results obtained confirmed the successful coverage of nanospheres with porous silica. A much higher concentration of ruthenium species was found on the surface of the catalysts than in their bulk. The opposite relationship was observed for magnesium species. The modification of nanospheres with silica had a positive effect on the catalytic activity of the materials obtained. For the most active sample, i.e., Ru/NS/3Mg/NS, 49% of levulinic acid conversion in its hydrogenation process was reported with γ-valerolactone as the only product.


Sign in / Sign up

Export Citation Format

Share Document