pt nanoparticles
Recently Published Documents


TOTAL DOCUMENTS

2811
(FIVE YEARS 734)

H-INDEX

97
(FIVE YEARS 16)

Author(s):  
Nithin Poonkottil ◽  
Ranjith K. Ramachandran ◽  
Eduardo Solano ◽  
Nadadur Veeraraghavan Srinath ◽  
Ji-Yu Feng ◽  
...  
Keyword(s):  

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhe Gao ◽  
Guofu Wang ◽  
Tingyu Lei ◽  
Zhengxing Lv ◽  
Mi Xiong ◽  
...  

AbstractThe contribution of the reverse spillover effect to hydrogen generation reactions is still controversial. Herein, the promotion functions for reverse spillover in the ammonia borane hydrolysis reaction are proven by constructing a spatially separated NiO/Al2O3/Pt bicomponent catalyst via atomic layer deposition and performing in situ quick X-ray absorption near-edge structure (XANES) characterization. For the NiO/Al2O3/Pt catalyst, NiO and Pt nanoparticles are attached to the outer and inner surfaces of Al2O3 nanotubes, respectively. In situ XANES results reveal that for ammonia borane hydrolysis, the H species generated at NiO sites spill across the support to the Pt sites reversely. The reverse spillover effects account for enhanced H2 generation rates for NiO/Al2O3/Pt. For the CoOx/Al2O3/Pt and NiO/TiO2/Pt catalysts, reverse spillover effects are also confirmed. We believe that an in-depth understanding of the reverse effects will be helpful to clarify the catalytic mechanisms and provide a guide for designing highly efficient catalysts for hydrogen generation reactions.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Mina Razavi ◽  
M. Sookhakian ◽  
Boon Tong Goh ◽  
Hadariah Bahron ◽  
Eyas Mahmoud ◽  
...  

AbstractElectrochemical hydrogen evolution reaction (HER) refers to the process of generating hydrogen by splitting water molecules with applied external voltage on the active catalysts. HER reaction in the acidic medium can be studied by different mechanisms such as Volmer reaction (adsorption), Heyrovsky reaction (electrochemical desorption) or Tafel reaction (recombination). In this paper, facile hydrothermal methods are utilized to synthesis a high-performance metal-inorganic composite electrocatalyst, consisting of platinum nanoparticles (Pt) and molybdenum disulfide nanosheets (MoS2) with different platinum loading. The as-synthesized composite is further used as an electrocatalyst for HER. The as-synthesized Pt/Mo-90-modified glassy carbon electrode shows the best electrocatalytic performance than pure MoS2 nanosheets. It exhibits Pt-like performance with the lowest Tafel slope of 41 mV dec−1 and superior electrocatalytic stability in an acidic medium. According to this, the HER mechanism is related to the Volmer-Heyrovsky mechanism, where hydrogen adsorption and desorption occur in the two-step process. According to electrochemical impedance spectroscopy analysis, the presence of Pt nanoparticles enhanced the HER performance of the MoS2 nanosheets because of the increased number of charge carriers transport.


2022 ◽  
Vol 9 ◽  
Author(s):  
Ting-Wen Chen ◽  
Da-Wei Pang ◽  
Jian-Xin Kang ◽  
Dong-Feng Zhang ◽  
Lin Guo

In this paper, we report the construction of network-like platinum (Pt) nanosheets based on Pt/reduced graphite oxide (Pt/rGO) hybrids by delicately utilizing a calorific-effect-induced-fusion strategy. The tiny Pt species first catalyzed the H2-O2 combination reaction. The released heat triggered the combustion of the rGO substrate under the assistance of the Pt species catalysis, which induced the fusion of the tiny Pt species into a network-like nanosheet structure. The loading amount and dispersity of Pt on rGO are found to be crucial for the successful construction of network-like Pt nanosheets. The as-prepared products present excellent catalytic hydrogenation activity and superior stability towards unsaturated bonds such as olefins and nitrobenzene. The styrene can be completely converted into phenylethane within 60 min. The turnover frequency (TOF) value of network-like Pt nanosheets is as high as 158.14 h−1, which is three times higher than that of the home-made Pt nanoparticles and among the highest value of the support-free bimetallic catalysts ever reported under similar conditions. Furthermore, the well dispersibility and excellent aggregation resistance of the network-like structure endows the catalyst with excellent recyclability. The decline of conversion could be hardly identified after five times recycling experiments.


The Analyst ◽  
2022 ◽  
Author(s):  
Feng Shi ◽  
Jiayin Li ◽  
Jiaxiang Xiao ◽  
Xinxi Ma ◽  
Yadong Xue ◽  
...  

Efficient urchin-like Pt nanoparticles@Bi2S3 (PtNPs@Bi2S3) composite materials were prepared by a composite soft template synthesis of urchin-like Bi2S3 and then microwave-assisted growth of PtNPs onto Bi2S3 nanostructure. A sensitive electrochemical...


Author(s):  
Yang Qiu ◽  
Juan A. Lopez-Ruiz ◽  
Guomim Zhu ◽  
Mark H. Engelhard ◽  
Oliver Y. Gutiérrez ◽  
...  

2022 ◽  
pp. 134415
Author(s):  
Lan-Xin Li ◽  
Gui-Cheng Zhang ◽  
Wu-Ji Sun ◽  
Hao-Yu Zhang ◽  
Shu-Xian Wang ◽  
...  
Keyword(s):  

2022 ◽  
Vol 334 ◽  
pp. 04005
Author(s):  
Eva Sousa ◽  
Sofia Delgado ◽  
Tiago Lagarteira ◽  
Adélio Mendes

Hybrid supports have been proposed as a new alternative to increase the stability of ORR catalysts used in PEMFCs for automotive applications since they are known to be stable under harsh conditions. In this work, Pt nanoparticles were deposited over C/SiO2, via single-step polyol method, to take advantage of the corrosion-resistance properties of silica nanoparticles. In fact, the synthesis parameters, namely, pH, temperature, and glycol concentration had a remarkable impact on the Pt size-distribution, crystallinity, and dispersion over the C/SiO2 supports. A maximum ORR activity and stability was obtained for Pt/C/SiO2 catalysts produced at 1:6 W/EG (v/v). The addition of SiO2 nanoparticles to the carbon structure showed their ability to effectively inhibit support corrosion and Pt nanoparticles detachment and/or growth, with the pH adjustments being critical for obtaining highly stable C/SiO2 supports. Pt/C/SiO2 synthetized under acidic conditions revealed the highest stability when subjected to accelerated stress tests (ASTs), losing only 30 % of the initial electrochemically active surface area (ECSA) of Pt after 4 000 cycles from 0.6 to 1 V (vs RHE), whereas the commercial Pt/C revealed > 50 % of ECSA loss.


Sign in / Sign up

Export Citation Format

Share Document