biological interest
Recently Published Documents


TOTAL DOCUMENTS

820
(FIVE YEARS 92)

H-INDEX

51
(FIVE YEARS 5)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 648
Author(s):  
Angela Mazzeo ◽  
Jacopo Aguzzi ◽  
Marcello Calisti ◽  
Simonepietro Canese ◽  
Fabrizio Vecchi ◽  
...  

The collection of delicate deep-sea specimens of biological interest with remotely operated vehicle (ROV) industrial grippers and tools is a long and expensive procedure. Industrial grippers were originally designed for heavy manipulation tasks, while sampling specimens requires dexterity and precision. We describe the grippers and tools commonly used in underwater sampling for scientific purposes, systematically review the state of the art of research in underwater gripping technologies, and identify design trends. We discuss the possibility of executing typical manipulations of sampling procedures with commonly used grippers and research prototypes. Our results indicate that commonly used grippers ensure that the basic actions either of gripping or caging are possible, and their functionality is extended by holding proper tools. Moreover, the approach of the research status seems to have changed its focus in recent years: from the demonstration of the validity of a specific technology (actuation, transmission, sensing) for marine applications, to the solution of specific needs of underwater manipulation. Finally, we summarize the environmental and operational requirements that should be considered in the design of an underwater gripper.


2022 ◽  
Author(s):  
Melanie Bernette Abrams ◽  
Rachel B Brem

Many traits of industrial and basic biological interest arose long ago, and manifest now as fixed differences between a focal species and its reproductively isolated relatives. In these systems, extant individuals can hold clues to the mechanisms by which phenotypes evolved in their ancestors. We harnessed yeast thermotolerance as a test case for such molecular-genetic inferences. In viability experiments, we showed that extant Saccharomyces cerevisiae survived at temperatures where cultures of its sister species S. paradoxus died out. Then, focusing on loci that contribute to this difference, we found that the genetic mechanisms of high-temperature growth changed with temperature. We also uncovered a robust signature of positive selection at thermotolerance loci in S. cerevisiae population sequences. We interpret these results in light of a model of gradual acquisition of thermotolerance in the S. cerevisiae lineage along a temperature cline. We propose that in an ancestral S. cerevisiae population, alleles conferring defects at a given temperature would have been resolved by adaptive mutations, expanding the range and setting the stage for further temperature advances. Together, our results and interpretation underscore the power of genetic approaches to explore how an ancient trait came to be.


2022 ◽  
Vol 19 ◽  
Author(s):  
Achraf Abdou ◽  
Sabrine Idouaarame ◽  
Mohammed Salah ◽  
Nabil Nor ◽  
Soukaina Zahm, ◽  
...  

Abstract: Eugenol (4-allyl-2-methoxyphenol) is a natural phenolic compound present in certain aromatic plants; however, it is generally extracted from essential oil of Eugenia caryophyllata (Syzygiumaromaticum) (L.) Merr. and L.M. Perry. This bioactive natural compound has generated considerable biological interest with well-known antimicrobial and antioxidant actions. The authors have aimed to the evaluations of eugenol derivatives and their as antimicrobial and antioxidant agent with the aid of molecular dynamic simulation. The starting material was extracted from cloves using hydrodistillation. Two eugenol derivatives, acetyleugenol (4-allyl-2-methoxyphenylacetate) and epoxyeugenol (4-allyl-2-methoxyphenol) were prepared and tested against two strains Escherichia coli (E. Coli) and Staphylococcus aureus (S. Aureus). The results have revealed that the three compounds (Eugenol, acetyleugenol and epoxyeugenol) possess important potentials of inhibition against E. coli and S. Aureus. The antioxidant activity of eugenol derivatives was evaluated by the reaction with DPPH (1,1-diphenyl-2-picrylhydrazyl), showed that the epoxyeugenol was the most active compound. The molecular docking scores of three compounds and the amino acids in the active site pockets of the selected proteins of the two bacteria have approved and explain the biological experimental outcomes.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Youness Mabrouki ◽  
◽  
Peter Glöer ◽  
Abdelkhaleq F. Taybi ◽  
◽  
...  

A new planorbid gastropod species is described: Gyraulus marocana sp. nov. It can be distinguished from other known species by its regularly striated ivory shell, with four whorls separated by a deep suture, prostate gland with 20 diverticula, phallotheca twice as long as the preputium and its orange stylet. The new species was found in the northern part of Morocco, in Lake Zerrouka, a Protected Area, being also a site of ecological and biological interest (known as SIBE). It is located in the Middle Atlas massif, which is a geographical barrier known for its other endemic molluscs.


2022 ◽  
Author(s):  
Hongling Yan ◽  
Yinlin Zhou ◽  
Fei Tang ◽  
Chengjiu Wang ◽  
Jing Wu ◽  
...  

Ligusticum chuanxiong Hort. (CX) is a medicinal and edible plant with a wide range of constituents of biological interest. Since the biomass of the non-medicinal parts of CX is huge,...


Chemosensors ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Begoña Verdejo ◽  
Mario Inclán ◽  
María Paz Clares ◽  
Irene Bonastre-Sabater ◽  
Mireia Ruiz-Gasent ◽  
...  

Polyamine ligands are water-soluble receptors that are able to coordinate, depending on their protonation degree, either metal ions, anionic, or neutral species. Furthermore, the presence of fluorescent signaling units allows an immediate visual response/signal. For these reasons, they can find applications in a wide variety of fields, mainly those where aqueous media is necessary, such as biological studies, wastewater analysis, soil contamination, etc. This review provides an overview of the recent developments in the research of chemosensors based on polyamine ligands functionalized with fluorescent signaling units. The discussion focuses on the design, synthesis, and physicochemical properties of this type of fluorescent chemosensors in order to analyze the applications associated to the sensing of metal ions, anions, and neutral molecules of environmental and/or biological interest. To facilitate a quick access and overview of all the chemosensors covered in this review, a summary table of the chemosensor structures and analytes, with all the corresponding references, is also presented.


Author(s):  
Swapan Kumar Biswas ◽  
Debasis Das

Background: Many pyrano[2,3-c]pyrazole derivatives display diverse biological activities and some of them are known as anticancer, analgesic, anticonvulsant, antimicrobial, anti-inflammatory, and anti-malarial agents. In recent years, easy convergent, multicomponent reactions (MCRs) have been adopted to make highly functionalizedpyrano[2,3-c]pyrazole derivatives of biological interest. The synthesis of 1,4-dihydropyrano[2,3-c]pyrazole (1,4-DHPP, 2), 2,4-dihydropyrano[2,3-c]pyrazole (2,4-DHPP, 3), 4-hydroxypyrano[2,3-c]pyrazole (4-HPP, 4) derivatives, 1,4,4-substitied pyranopyrazole (SPP, 5) were reported via two-, three-, four- and five-component reactions (MCRs). Methods: This review article compiles the preparation of pyrano[2,3-c]pyrazole derivatives, and it highlights the applications of various pyrano[2,3-c]pyrazole derivatives in medicinal chemistry. Results: Varieties of pyrano[2,3-c]pyrazole derivatives were achieved via “One-pot” multicomponent reactions (MCRs). Different reaction conditions in the presence of a catalyst or without catalysts were adapted to prepare the pyrano[2,3-c]pyrazole derivatives. Conclusion: Biologically active pyrano[2,3-c]pyrazole derivatives were prepared and used in drug discovery research.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2006
Author(s):  
Romina Castañeda-Arriaga ◽  
Adriana Perez-Gonzalez ◽  
Tiziana Marino ◽  
Nino Russo ◽  
Annia Galano

Nopal (Opuntia ficus indica) belonging to the Cactacea family has many nutritional benefits attributed to a wide variety of phenolic and flavonoid compounds. Coumaric acid (COA), ferulic acid (FLA), protocatechuic acid (PRA), and gallic acid (GAA) are the phenolic acids (PhAs) present in nopal. In this study, the role of these PhAs in copper-induced oxidative stress was investigated using the density functional theory (DFT). The PhAs form 5 thermodynamically favorable complexes with Cu(II), their conditional Gibbs free energies of reaction (ΔG’, at pH = 7.4, in kcal/mol) are from −23 kcal/mol to −18 kcal/mol. All of them are bi-dentate complexes. The complexes of PRA and GAA are capable of inhibiting the Cu(II) reduction by both O2•− and Asc−, their reactions with the chelated metal are endergonic having rate constants about ~10−5–102 M−1 s−1, PhAs can prevent the formation of hydroxyl free radicals by chelating the copper ions. Once the hydroxyl radicals are formed by Fenton reactions, the complexes of PhAs with Cu(II) can immediately react with them, thus inhibiting the damage that they can cause to molecules of biological interest. The reactions between PhAs-Cu(II) complexes and hydroxyl free radical were estimated to be diffusion-limited (~108 M−1s−1). Thus, these chelates can reduce the harmful effects caused by the most reactive free radical existent immediately after it is formed by Fenton reactions.


Author(s):  
Léo R. Belzile ◽  
Anthony C. Davison ◽  
Jutta Gampe ◽  
Holger Rootzén ◽  
Dmitrii Zholud

There is sustained and widespread interest in understanding the limit, if there is any, to the human life span. Apart from its intrinsic and biological interest, changes in survival in old age have implications for the sustainability of social security systems. A central question is whether the endpoint of the underlying lifetime distribution is finite. Recent analyses of data on the oldest human lifetimes have led to competing claims about survival and to some controversy, due in part to incorrect statistical analysis. This article discusses the particularities of such data, outlines correct ways of handling them, and presents suitable models and methods for their analysis. We provide a critical assessment of some earlier work and illustrate the ideas through reanalysis of semisupercentenarian lifetime data. Our analysis suggests that remaining life length after age 109 is exponentially distributed and that any upper limit lies well beyond the highest lifetime yet reliably recorded. Lower limits to 95% confidence intervals for the human life span are about 130 years, and point estimates typically indicate no upper limit at all. Expected final online publication date for the Annual Review of Statistics and Its Application, Volume 9 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Author(s):  
Ke LIU

Biomolecules and bionanoparticles, such as nucleic acids, proteins, microorganisms and extracellular vesicles (EVs), are recognized as important targets for fundamental research, clinical diagnostic and therapeutic applications. To gain detailed information of those bionanoparticles, we demonstrate an electroosmotic (EO) driven transport behavior in silicon and silicon nitride-based nanopore, towards an accurate measure of concentration and sizing of sub-micro particles for a general biological interest.


Sign in / Sign up

Export Citation Format

Share Document