Ab Initio Quantum Chemical and Experimental (Shock Tube) Studies of the Pyrolysis Kinetics of Acetonitrile

1999 ◽  
Vol 103 (8) ◽  
pp. 1054-1072 ◽  
Author(s):  
Karina Sendt ◽  
Emi Ikeda ◽  
George B. Bacskay ◽  
John C. Mackie
1996 ◽  
Vol 36 (3) ◽  
pp. 239-248 ◽  
Author(s):  
Jeffrey Jones ◽  
George B. Bacskay ◽  
John C. Mackie

1999 ◽  
Vol 103 (20) ◽  
pp. 3923-3934 ◽  
Author(s):  
Muhamad Martoprawiro ◽  
George B. Bacskay ◽  
John C. Mackie

Author(s):  
Nguyen Huu Tho ◽  
Nguyen Xuan Sang

This work studied theoretically in details the mechanism, kinetics and thermochemistry of reactions of methyl radical with methanol. The theoretical study was carried out by ab initio molecular orbital theory based on CCSD(T)/B3LYP/6-311++G(3df,2p) methods in conjunction variational transition state theory (VTST). Calculated results showed that, in the temperature range from 300K to 2000K, and the pressure at 760 Torr, temperature dependent rate constants of the reactions were: CH3 + CH3OH ® CH4 + CH2OH    k(T) = 2.146´10-27.T4.64.exp(-33.47[kJ/mol/RT), CH3 + CH3OH ® CH4 + CH3O       k(T) = 2.583´10-27.T4.52.exp(-29.56[kJ/mol/RT), CH3 + CH3OH ® H + CH3OCH3    k(T) = 1.025´10-23.T3.16.exp(-186.84[kJ/mol/RT) When the reaction temperature is above 730 K, the abstraction process of H in –CH3 group of methanol will occur faster. The abstraction process of H in –OH group dominates when the reaction temperature is below 730 K. Keywords Kinetic, methyl, methanol, ab initio References 1. Slagle, I.R., D. Sarzynski, and D. Gutman, Kinetics of the reaction between methyl radicals and oxygen atoms between 294 and 900 K. The Journal of Physical Chemistry, 1987. 91(16): p. 4375-4379.2. Rutz L., B.H., Bozzelli J. W., Methyl Radical and Shift Reactions with Aliphatic and Aromatic Hydrocarbons: Thermochemical Properties, Reaction Paths and Kinetic Parameters. American Chemical Society, Division Fuel Chemistry, 2004. 49(1): p. 451-452.3. Johnson, D.G., M.A. Blitz, and P.W. Seakins, The reaction of methylidene (CH) with methanol isotopomers. Physical Chemistry Chemical Physics, 2000. 2(11): p. 2549-2553.4. Cribb, P.H., J.E. Dove, and S. Yamazaki, A kinetic study of the pyrolysis of methanol using shock tube and computer simulation techniques. Combustion and Flame, 1992. 88(2): p. 169-185.5. Dombrowsky, C., et al., An Investigation of the Methanol Decomposition Behind Incident Shock Waves. Berichte der Bunsengesellschaft für physikalische Chemie, 1991. 95(12): p. 1685-1687.6. Krasnoperov, L.N. and J.V. Michael, High-Temperature Shock Tube Studies Using Multipass Absorption:  Rate Constant Results for OH + CH3, OH + CH2, and the Dissociation of CH3OH. The Journal of Physical Chemistry A, 2004. 108(40): p. 8317-8323.7. Shannon, T.W. and A.G. Harrison, The reaction of methyl radicals with methyl alcohol. Canadian Journal of Chemistry, 1963. 41(10): p. 2455-2461.8. Jodkowski, J.T., et al., Theoretical Study of the Kinetics of the Hydrogen Abstraction from Methanol. 3. Reaction of Methanol with Hydrogen Atom, Methyl, and Hydroxyl Radicals. The Journal of Physical Chemistry A, 1999. 103(19): p. 3750-3765.9. Alecu, I.M. and D.G. Truhlar, Computational Study of the Reactions of Methanol with the Hydroperoxyl and Methyl Radicals. 2. Accurate Thermal Rate Constants. The Journal of Physical Chemistry A, 2011. 115(51): p. 14599-14611.10. Peukert, S.L. and J.V. Michael, High-Temperature Shock Tube and Modeling Studies on the Reactions of Methanol with D-Atoms and CH3-Radicals. The Journal of Physical Chemistry A, 2013. 117(40): p. 10186-10195.11. Anastasi, C. and D.U. Hancock, Reaction of CH3 radicals with methanol in the range 525 <T/K < 603. Journal of the Chemical Society, Faraday Transactions, 1990. 86(14): p. 2553-2555.12. Dombrowsky, C. and H.G. Wagner, An investigation of the reaction between CH3 radicals and methanol at high temperatures. Berichte der Bunsengesellschaft für physikalische Chemie, 1989. 93(5): p. 633-637.13. Tsang, W., Chemical Kinetic Data Base for Combustion Chemistry. Part 2. Methanol. Journal of Physical and Chemical Reference Data, 1987. 16(3): p. 471-508.14. Becke, A.D., Density‐functional thermochemistry. II. The effect of the Perdew–Wang generalized‐gradient correlation correction. The Journal of Chemical Physics, 1992. 97(12): p. 9173-9177.15. Becke, A.D., Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of Chemical Physics, 1992. 96(3): p. 2155-2160.16. Becke, A.D., Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 1993. 98(7): p. 5648-5652.17. Yang, W., R.G. Parr, and C. Lee, Various functionals for the kinetic energy density of an atom or molecule. Physical Review A, 1986. 34(6): p. 4586-4590.18. Hehre W. , R.L., Schleyer P. V. R. , and Pople J. A. and 30, Ab Initio Molecular Orbital Theory. 1986, New York: Wiley.19. Andersson, M.P. and P. Uvdal, New Scale Factors for Harmonic Vibrational Frequencies Using the B3LYP Density Functional Method with the Triple-ζ Basis Set 6-311+G(d,p). The Journal of Physical Chemistry A, 2005. 109(12): p. 2937-2941.20. Raghavachari, K., et al., A fifth-order perturbation comparison of electron correlation theories. Chemical Physics Letters, 1989. 157(6): p. 479-483.21. M.J. Frisch, G.W.T., H.B. Schlegel, et al., GAUSSIAN 09, Revision C.01, Gaussian Inc., Wallingford CT, 2010.22. Robson Wright, M., Theories of Chemical Reactions, in An Introduction to Chemical Kinetics. 2005, John Wiley & Sons, Ltd. p. 99-164.23. Goos, E.B., A.; Ruscic, B., Extended Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables. http://garfield.chem.elte.hu/Burcat/burcat.html, October, 2017.


2001 ◽  
Vol 23 (7) ◽  
pp. 657-663 ◽  
Author(s):  
Yilser Güldoğan ◽  
Tülay Durusoy ◽  
Tijen Bozdemir

2020 ◽  
Vol 16 (2) ◽  
pp. 93-103 ◽  
Author(s):  
Piotr Kawczak ◽  
Leszek Bober ◽  
Tomasz Bączek

Background: Pharmacological and physicochemical classification of bases’ selected analogues of nucleic acids is proposed in the study. Objective: Structural parameters received by the PCM (Polarizable Continuum Model) with several types of calculation methods for the structures in vacuo and in the aquatic environment together with the huge set of extra molecular descriptors obtained by the professional software and literature values of biological activity were used to search the relationships. Methods: Principal Component Analysis (PCA) together with Factor Analysis (FA) and Multiple Linear Regressions (MLR) as the types of the chemometric approach based on semi-empirical ab initio molecular modeling studies were performed. Results: The equations with statistically significant descriptors were proposed to demonstrate both the common and differentiating characteristics of the bases' analogues of nucleic acids based on the quantum chemical calculations and biological activity data. Conclusion: The obtained QSAR models can be used for predicting and explaining the activity of studied molecules.


2018 ◽  
Vol 50 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Ruijuan Wang ◽  
Fang Liang ◽  
Changle Jiang ◽  
Zehui Jiang ◽  
Jingxin Wang ◽  
...  

1990 ◽  
Vol 55 (1) ◽  
pp. 10-20 ◽  
Author(s):  
Stanislav Böhm ◽  
Josef Kuthan

Ab initio MO optimalization of the 2H-pyran molecule leads to a defined equilibrium geometry of this so far not identified heterocyclic molecule and to a physical justification of its existence. More advanced nonempirical wavefunctions and temperature corrections indicate that heterocyclic molecule I is energetically less stable than non-cyclic isomers II and III. Wavenumbers of fundamental vibrational transitions of heterocycle I and also known (2E)-2,4-pentadienal (IIIb were calculated using 3-21 G wavefunctions. The vibrational spectrum of compound I is predicted on the basis of correlation corrections.


Sign in / Sign up

Export Citation Format

Share Document