Quantum chemical prediction of 2H-pyran vibration spectrum

1990 ◽  
Vol 55 (1) ◽  
pp. 10-20 ◽  
Author(s):  
Stanislav Böhm ◽  
Josef Kuthan

Ab initio MO optimalization of the 2H-pyran molecule leads to a defined equilibrium geometry of this so far not identified heterocyclic molecule and to a physical justification of its existence. More advanced nonempirical wavefunctions and temperature corrections indicate that heterocyclic molecule I is energetically less stable than non-cyclic isomers II and III. Wavenumbers of fundamental vibrational transitions of heterocycle I and also known (2E)-2,4-pentadienal (IIIb were calculated using 3-21 G wavefunctions. The vibrational spectrum of compound I is predicted on the basis of correlation corrections.

1991 ◽  
Vol 69 (11) ◽  
pp. 1845-1856 ◽  
Author(s):  
J. F. Sullivan ◽  
Aiying Wang ◽  
Mei-Shiow Cheng ◽  
J. R. Durig

The Raman spectra (3200–50 cm−1) of gaseous, liquid, and solid 2-chloropropane-d3 (isopropyl-d3 chloride), CH3(CD3)CHCl, and the infrared spectra (3200–50 cm−1) of the gas and solid have been recorded. The torsional transitions observed in the far infrared spectrum of the gaseous sample recorded at a resolution of 0.10 cm−1 between 265 and 135 cm−1 were analyzed in terms of the semirigid rotor model. An effective barrier of 1378 ± 4 cm−1 (3.94 ± 0.01 kcal/mol), cosine–cosine coupling term of 166 ± 10 cm−1 (0.47 ± 0.03 kcal/mol), and sine–sine coupling term of −173 ± 1 cm−1 (−0.49 ± 0.01 kcal/mol) were determined by fitting ten observed frequencies arising from the CH3 and CD3 torsions. The assignment of the 27 fundamentals is given and discussed. A complete equilibrium geometry, barrier to internal rotation, and vibrational frequencies have been determined by ab initio Hartree–Fock gradient calculations employing either 3-21G* or 6-31G* basis sets for both the d0 and d3 species. These calculated results are compared to the experimental values as well as to the corresponding quantities for some similar molecules. Key words: 2-chloropropane, vibrational spectrum; ab initio calculations; barrier to internal rotation.


2020 ◽  
Vol 16 (2) ◽  
pp. 93-103 ◽  
Author(s):  
Piotr Kawczak ◽  
Leszek Bober ◽  
Tomasz Bączek

Background: Pharmacological and physicochemical classification of bases’ selected analogues of nucleic acids is proposed in the study. Objective: Structural parameters received by the PCM (Polarizable Continuum Model) with several types of calculation methods for the structures in vacuo and in the aquatic environment together with the huge set of extra molecular descriptors obtained by the professional software and literature values of biological activity were used to search the relationships. Methods: Principal Component Analysis (PCA) together with Factor Analysis (FA) and Multiple Linear Regressions (MLR) as the types of the chemometric approach based on semi-empirical ab initio molecular modeling studies were performed. Results: The equations with statistically significant descriptors were proposed to demonstrate both the common and differentiating characteristics of the bases' analogues of nucleic acids based on the quantum chemical calculations and biological activity data. Conclusion: The obtained QSAR models can be used for predicting and explaining the activity of studied molecules.


2021 ◽  
Author(s):  
Soichi Shirai ◽  
Shinji Inagaki

Practical strategies for suppressing Si–C cleavage during the polycondensation of organosilanes were presented based on ab initio quantum chemical calculations of model compounds.


2009 ◽  
Vol 50 (2) ◽  
pp. 195-200 ◽  
Author(s):  
Yu. V. Frolov ◽  
A. V. Vashchenko ◽  
A. G. Mal’kina ◽  
B. A. Trofimov

1981 ◽  
Vol 36 (11) ◽  
pp. 1246-1252 ◽  
Author(s):  
Michael H. Palmer ◽  
Isobel Simpson ◽  
J. Ross Wheeler

The photoelectron spectra of the tautomeric 1,2,3,- and 1,2,4-triazole and 1,2,3,4-tetrazole systems have been compared with the corresponding N-methyl derivatives. The dominant tautomers in the gas phase have been identified as 2 H-1,2,3-triazole, 1 H-1,2,4-triazole and 2H-tetrazole.Full optimisation of the equilibrium geometry by ab initio molecular orbital methods leads to the same conclusions, for relative stability of the tautomers in each of the triazoles, but the calculations wrongly predict the tetrazole tautomerism.


1982 ◽  
Vol 72 (1-2) ◽  
pp. 155-159 ◽  
Author(s):  
Th. Weller ◽  
W. Meiler ◽  
A. Michael ◽  
H.J. Köhler ◽  
H. Lischka ◽  
...  

2012 ◽  
Vol 116 (7) ◽  
pp. 1717-1729 ◽  
Author(s):  
Laimutis Bytautas ◽  
Nikita Matsunaga ◽  
Gustavo E. Scuseria ◽  
Klaus Ruedenberg

Sign in / Sign up

Export Citation Format

Share Document