Crystal structures of PET-degrading enzyme Cut190 in substrate-bound states reveal the enzymatic reaction cycle accelerated by calcium ion

Author(s):  
Nobutaka Numoto
2014 ◽  
Vol 70 (11) ◽  
pp. 1468-1471
Author(s):  
Trung Thanh Thach ◽  
Sangho Lee

Adenylate kinases (AdKs; EC 2.7.3.4) play a critical role in intercellular homeostasis by the interconversion of ATP and AMP to two ADP molecules. Crystal structures of adenylate kinase fromStreptococcus pneumoniaeD39 (SpAdK) have recently been determined using ligand-free and inhibitor-bound crystals belonging to space groupsP21andP1, respectively. Here, new crystal structures of SpAdK in ligand-free and inhibitor-bound states determined at 1.96 and 1.65 Å resolution, respectively, are reported. The new ligand-free crystal belonged to space groupC2, with unit-cell parametersa= 73.5,b= 54.3,c= 62.7 Å, β = 118.8°. The new ligand-free structure revealed an open conformation that differed from the previously determined conformation, with an r.m.s.d on Cαatoms of 1.4 Å. The new crystal of the complex with the two-substrate-mimicking inhibitorP1,P5-bis(adenosine-5′-)pentaphosphate (Ap5A) belonged to space groupP1, with unit-cell parametersa= 53.9,b= 62.3,c= 63.0 Å, α = 101.9, β = 112.6, γ = 89.9°. Despite belonging to the same space group as the previously reported crystal, the new Ap5A-bound crystal contains four molecules in the asymmetric unit, compared with two in the previous crystal, and shows slightly different lattice contacts. These results demonstrate that SpAdK can crystallize promiscuously in different forms and that the open structure is flexible in conformation.


Structure ◽  
2002 ◽  
Vol 10 (4) ◽  
pp. 557-567 ◽  
Author(s):  
Ludovic R. Otterbein ◽  
Jolanta Kordowska ◽  
Carlos Witte-Hoffmann ◽  
C.-L.Albert Wang ◽  
Roberto Dominguez

2014 ◽  
Vol 21 (11) ◽  
pp. 976-980 ◽  
Author(s):  
Marios Zouridakis ◽  
Petros Giastas ◽  
Eleftherios Zarkadas ◽  
Dafni Chroni-Tzartou ◽  
Piotr Bregestovski ◽  
...  

2019 ◽  
Author(s):  
Mahima Sharma ◽  
Palika Abayakoon ◽  
James P. Lingford ◽  
Yi Jin ◽  
Ruwan Epa ◽  
...  

2,3-Dihydroxypropanesulfonate (DHPS) is a major sulfur species in the biosphere. One important route for the production of DHPS includes sulfoglycolytic catabolism of sulfoquinovose (SQ) through the Embden-Meyerhof-Parnas (sulfo-EMP) pathway. SQ is a sulfonated carbohydrate present in plant and cyanobacterial sulfolipids (sulfoquinovosyl diacylglyceride and its metabolites) and is biosynthesised globally at a rate of around 10 billion tonnes per annum. The final step in the bacterial sulfo-EMP pathway involves reduction of sulfolactaldehyde (SLA) to DHPS, catalysed by an NADH-dependent SLA reductase. On the basis of conserved sequence motifs, we assign SLA reductase to the β-hydroxyacid dehydrogenase (β-HAD) family, making it the first example of a β-HAD enzyme that acts on a sulfonic acid, rather than a carboxylic acid substrate. We report crystal structures of the SLA reductase YihU from E. coli K-12 in its apo and cofactor-bound states, as well as the ternary complex YihU•NADH•DHPS with the cofactor and product bound in the active site. Conformational flexibility observed in these structures, combined with kinetic studies, confirm a sequential mechanism and provide evidence for dynamic domain movements that occur during catalysis. The ternary complex structure reveals a conserved sulfonate pocket in SLA reductase that recognises the sulfonate oxygens through hydrogen bonding to Asn174, Ser178, and the backbone amide of Arg123, along with an ordered water molecule. This triad of residues distinguishes these enzymes from classical β-HADs that act on carboxylate substrates. A comparison of YihU crystal structures with close structural homologues within the β-HAD family highlights key differences in the overall domain organization and identifies a unique peptide sequence that is predictive of SLA reductase activity.<br>


2019 ◽  
Author(s):  
Mahima Sharma ◽  
Palika Abayakoon ◽  
James P. Lingford ◽  
Yi Jin ◽  
Ruwan Epa ◽  
...  

2,3-Dihydroxypropanesulfonate (DHPS) is a major sulfur species in the biosphere. One important route for the production of DHPS includes sulfoglycolytic catabolism of sulfoquinovose (SQ) through the Embden-Meyerhof-Parnas (sulfo-EMP) pathway. SQ is a sulfonated carbohydrate present in plant and cyanobacterial sulfolipids (sulfoquinovosyl diacylglyceride and its metabolites) and is biosynthesised globally at a rate of around 10 billion tonnes per annum. The final step in the bacterial sulfo-EMP pathway involves reduction of sulfolactaldehyde (SLA) to DHPS, catalysed by an NADH-dependent SLA reductase. On the basis of conserved sequence motifs, we assign SLA reductase to the β-hydroxyacid dehydrogenase (β-HAD) family, making it the first example of a β-HAD enzyme that acts on a sulfonic acid, rather than a carboxylic acid substrate. We report crystal structures of the SLA reductase YihU from E. coli K-12 in its apo and cofactor-bound states, as well as the ternary complex YihU•NADH•DHPS with the cofactor and product bound in the active site. Conformational flexibility observed in these structures, combined with kinetic studies, confirm a sequential mechanism and provide evidence for dynamic domain movements that occur during catalysis. The ternary complex structure reveals a conserved sulfonate pocket in SLA reductase that recognises the sulfonate oxygens through hydrogen bonding to Asn174, Ser178, and the backbone amide of Arg123, along with an ordered water molecule. This triad of residues distinguishes these enzymes from classical β-HADs that act on carboxylate substrates. A comparison of YihU crystal structures with close structural homologues within the β-HAD family highlights key differences in the overall domain organization and identifies a unique peptide sequence that is predictive of SLA reductase activity.<br>


2019 ◽  
Author(s):  
Mahima Sharma ◽  
Palika Abayakoon ◽  
James P. Lingford ◽  
Yi Jin ◽  
Ruwan Epa ◽  
...  

2,3-Dihydroxypropanesulfonate (DHPS) is a major sulfur species in the biosphere. One important route for the production of DHPS includes sulfoglycolytic catabolism of sulfoquinovose (SQ) through the Embden-Meyerhof-Parnas (sulfo-EMP) pathway. SQ is a sulfonated carbohydrate present in plant and cyanobacterial sulfolipids (sulfoquinovosyl diacylglyceride and its metabolites) and is biosynthesised globally at a rate of around 10 billion tonnes per annum. The final step in the bacterial sulfo-EMP pathway involves reduction of sulfolactaldehyde (SLA) to DHPS, catalysed by an NADH-dependent SLA reductase. On the basis of conserved sequence motifs, we assign SLA reductase to the β-hydroxyacid dehydrogenase (β-HAD) family, making it the first example of a β-HAD enzyme that acts on a sulfonic acid, rather than a carboxylic acid substrate. We report crystal structures of the SLA reductase YihU from E. coli K-12 in its apo and cofactor-bound states, as well as the ternary complex YihU•NADH•DHPS with the cofactor and product bound in the active site. Conformational flexibility observed in these structures, combined with kinetic studies, confirm a sequential mechanism and provide evidence for dynamic domain movements that occur during catalysis. The ternary complex structure reveals a conserved sulfonate pocket in SLA reductase that recognises the sulfonate oxygens through hydrogen bonding to Asn174, Ser178, and the backbone amide of Arg123, along with an ordered water molecule. This triad of residues distinguishes these enzymes from classical β-HADs that act on carboxylate substrates. A comparison of YihU crystal structures with close structural homologues within the β-HAD family highlights key differences in the overall domain organization and identifies a unique peptide sequence that is predictive of SLA reductase activity.<br>


Sign in / Sign up

Export Citation Format

Share Document