Acta Crystallographica Section F Structural Biology Communications
Latest Publications


TOTAL DOCUMENTS

1218
(FIVE YEARS 262)

H-INDEX

22
(FIVE YEARS 5)

Published By International Union Of Crystallography

2053-230x

Author(s):  
Jahaun Azadmanesh ◽  
William E. Lutz ◽  
Leighton Coates ◽  
Kevin L. Weiss ◽  
Gloria E. O. Borgstahl

Structurally identifying the enzymatic intermediates of redox proteins has been elusive due to difficulty in resolving the H atoms involved in catalysis and the susceptibility of ligand complexes to photoreduction from X-rays. Cryotrapping ligands for neutron protein crystallography combines two powerful tools that offer the advantage of directly identifying hydrogen positions in redox-enzyme intermediates without radiolytic perturbation of metal-containing active sites. However, translating cryogenic techniques from X-ray to neutron crystallography is not straightforward due to the large crystal volumes and long data-collection times. Here, methods have been developed to visualize the evasive peroxo complex of manganese superoxide dismutase (MnSOD) so that all atoms, including H atoms, could be visualized. The subsequent cryocooling and ligand-trapping methods resulted in neutron data collection to 2.30 Å resolution. The P6122 crystal form of MnSOD is challenging because it has some of the largest unit-cell dimensions (a = b = 77.8, c = 236.8 Å) ever studied using high-resolution cryo-neutron crystallography. The resulting neutron diffraction data permitted the visualization of a dioxygen species bound to the MnSOD active-site metal that was indicative of successful cryotrapping.


Author(s):  
Chunhong Yan ◽  
John S. Sack

The X-ray crystal structure of a human cardiac muscle troponin C/troponin I chimera has been determined in two different crystal forms and shows a conformation of the complex that differs from that previously observed by NMR. The chimera consists of the N-terminal domain of troponin C (cTnC; residues 1–80) fused to the switch region of troponin I (cTnI; residues 138–162). In both crystal forms, the cTnI residues form a six-turn α-helix that lays across the hydrophobic groove of an adjacent cTnC molecule in the crystal structure. In contrast to previous models, the cTnI helix runs in a parallel direction relative to the cTnC groove and completely blocks the calcium desensitizer binding site of the cTnC–cTnI interface.


Author(s):  
Jaysón Davidson ◽  
Kyndall Nicholas ◽  
Jeremy Young ◽  
Deborah G. Conrady ◽  
Stephen Mayclin ◽  
...  

Paraburkholderia xenovorans degrades organic wastes, including polychlorinated biphenyls. The atomic structure of a putative dehydrogenase/reductase (SDR) from P. xenovorans (PxSDR) was determined in space group P21 at a resolution of 1.45 Å. PxSDR shares less than 37% sequence identity with any known structure and assembles as a prototypical SDR tetramer. As expected, there is some conformational flexibility and difference in the substrate-binding cavity, which explains the substrate specificity. Uniquely, the cofactor-binding cavity of PxSDR is not well conserved and differs from those of other SDRs. PxSDR has an additional seven amino acids that form an additional unique loop within the cofactor-binding cavity. Further studies are required to determine how these differences affect the enzymatic functions of the SDR.


Author(s):  
Sudeep Karki ◽  
Tommi Kajander

Synaptic adhesion molecules are major organizers of the neuronal network and play a crucial role in the regulation of synapse development and maintenance in the brain. Synaptic adhesion-like molecules (SALMs) and leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-PTPs) are adhesion protein families with established synaptic function. Dysfunction of several synaptic adhesion molecules has been linked to cognitive disorders such as autism spectrum disorders and schizophrenia. A recent study of the binding and complex structure of SALM3 and PTPσ using small-angle X-ray scattering revealed a 2:2 complex similar to that observed for the interaction of human SALM5 and PTPδ. However, the molecular structure of the SALM3–PTPσ complex remains to be determined beyond the small-angle X-ray scattering model. Here, the expression, purification, crystallization and initial 6.5 Å resolution structure of the mouse SALM3–PTPσ complex are reported, which further verifies the formation of a 2:2 trans-heterotetrameric complex similar to the crystal structure of human SALM5–PTPδ and validates the architecture of the previously reported small-angle scattering-based solution structure of the SALM3–PTPσ complex. Details of the protein expression and purification, crystal optimization trials, and the initial structure solution and data analysis are provided.


Author(s):  
Abigael J. Kosgei ◽  
Mitchell D. Miller ◽  
Minakshi Bhardwaj ◽  
Weijun Xu ◽  
Jon S. Thorson ◽  
...  

Dynemicin is an enediyne natural product from Micromonospora chersina ATCC53710. Access to the biosynthetic gene cluster of dynemicin has enabled the in vitro study of gene products within the cluster to decipher their roles in assembling this unique molecule. This paper reports the crystal structure of DynF, the gene product of one of the genes within the biosynthetic gene cluster of dynemicin. DynF is revealed to be a dimeric eight-stranded β-barrel structure with palmitic acid bound within a cavity. The presence of palmitic acid suggests that DynF may be involved in binding the precursor polyene heptaene, which is central to the synthesis of the ten-membered ring of the enediyne core.


Author(s):  
Imani Porter ◽  
Trinity Neal ◽  
Zion Walker ◽  
Dylan Hayes ◽  
Kayla Fowler ◽  
...  

Members of the bacterial genus Brucella cause brucellosis, a zoonotic disease that affects both livestock and wildlife. Brucella are category B infectious agents that can be aerosolized for biological warfare. As part of the structural genomics studies at the Seattle Structural Genomics Center for Infectious Disease (SSGCID), FolM alternative dihydrofolate reductases 1 from Brucella suis and Brucella canis were produced and their structures are reported. The enzymes share ∼95% sequence identity but have less than 33% sequence identity to other homologues with known structure. The structures are prototypical NADPH-dependent short-chain reductases that share their highest tertiary-structural similarity with protozoan pteridine reductases, which are being investigated for rational therapeutic development.


Author(s):  
Edward N. Baker ◽  
Charles S. Bond ◽  
Elspeth F. Garman ◽  
Janet Newman ◽  
Randy J. Read ◽  
...  
Keyword(s):  

Author(s):  
Alexander McPherson

The structures of new crystal forms of Satellite tobacco mosaic virus (STMV) are described. These belong to space groups I2, P21212 (a low-resolution form), R3 (H3) and P23. The R3 crystals are 50%/50% twinned, as are two instances of the P23 crystals. The I2 and P21212 crystals were grown from ammonium sulfate solutions, as was one crystal in space group P23, while the R3 and the other P23 crystals were grown from sodium chloride, sodium bromide and sodium nitrate. The monoclinic and orthorhombic crystals have half a virus particle as the asymmetric unit, while the rhombohedral and cubic crystals have one third of a virus particle. RNA segments organized about the icosahedral twofold axes were present in crystals grown from ammonium sulfate and sodium chloride, as in the canonical I222 crystals (PDB entry 4oq8), but were not observed in crystals grown from sodium bromide and sodium nitrate. Bromide and nitrate ions generally replaced the RNA phosphates present in the I222 crystals, including the phosphates seen on fivefold axes, and were also found at threefold vertices in both the rhombohedral and cubic forms. An additional anion was also found on the fivefold axis 5 Å from the first anion, and slightly outside the capsid in crystals grown from sodium chloride, sodium bromide and sodium nitrate, suggesting that the path along the symmetry axis might be an ion channel. The electron densities for RNA strands at individual icosahedral dyads, as well as at the amino-terminal peptides of protein subunits, exhibited a diversity of orientations, in particular the residues at the ends.


Author(s):  
Setsu Nakae ◽  
Maho Kitamura ◽  
Daisuke Fujiwara ◽  
Masaaki Sawa ◽  
Tsuyoshi Shirai ◽  
...  

Eukaryotic protein kinases contain an Asp-Phe-Gly (DFG) motif, the conformation of which is involved in controlling the catalytic activity, at the N-terminus of the activation segment. The motif can be switched between active-state (DFG-in) and inactive-state (DFG-out) conformations: however, the mechanism of conformational change is poorly understood, partly because there are few reports of the DFG-out conformation. Here, a novel crystal structure of nonphosphorylated human mitogen-activated protein kinase kinase 1 (MEK1; amino acids 38–381) complexed with ATP-γS is reported in which MEK1 adopts the DFG-out conformation. The crystal structure revealed that the structural elements (the αC helix and HRD motif) surrounding the active site are involved in the formation/stabilization of the DFG-out conformation. The ATP-γS molecule was bound to the canonical ATP-binding site in a different binding mode that has never been found in previously determined crystal structures of MEK1. This novel ATP-γS binding mode provides a starting point for the design of high-affinity inhibitors of nonphosphorylated inactive MEK1 that adopts the DFG-out conformation.


Author(s):  
Jingxu Guo ◽  
Ronan M. Keegan ◽  
Daniel J. Rigden ◽  
Peter T. Erskine ◽  
Steve P. Wood ◽  
...  

Insect juvenile hormones (JHs) are a family of sesquiterpenoid molecules that are secreted into the haemolymph. JHs have multiple roles in insect development, metamorphosis and sexual maturation. A number of pesticides work by chemically mimicking JHs, thus preventing insects from developing and reproducing normally. The haemolymph levels of JH are governed by the rates of its biosynthesis and degradation. One enzyme involved in JH catabolism is JH diol kinase (JHDK), which uses ATP (or GTP) to phosphorylate JH diol to JH diol phosphate, which can be excreted. The X-ray structure of JHDK from the silkworm Bombyx mori has been determined at a resolution of 2.0 Å with an R factor of 19.0% and an R free of 24.8%. The structure possesses three EF-hand motifs which are occupied by calcium ions. This is in contrast to the recently reported structure of the JHDK-like-2 protein from B. mori (PDB entry 6kth), which possessed only one calcium ion. Since JHDK is known to be inhibited by calcium ions, it is likely that our structure represents the calcium-inhibited form of the enzyme. The electrostatic surface of the protein suggests a binding site for the triphosphate of ATP close to the N-terminal end of the molecule in a cavity between the N- and C-terminal domains. Superposition with a number of calcium-activated photoproteins suggests that there may be parallels between the binding of JH diol to JHDK and the binding of luciferin to aequorin.


Sign in / Sign up

Export Citation Format

Share Document