Further advancements in controlling nanoscale diamond chemistry with a brominated surface intermediate

Author(s):  
Abraham Wolcott ◽  
Camron Stokes ◽  
Halim Muhammad ◽  
Jorge Lopez-Rosas ◽  
Grace Drew ◽  
...  
Keyword(s):  
2013 ◽  
Vol 295-298 ◽  
pp. 326-330 ◽  
Author(s):  
Tian Cheng Liu ◽  
Yu Jiao Guo ◽  
Ping Ning ◽  
Ming Long Yuan

Catalytic hydrolysis decomposition of dichlorodifluoromethane (CCl2F2) in the presence of water vapor and oxygen was studied over a series of solid acids using a fixed-bed reactor. Solid acid MoO3/ZrO2 displayed the highest activity, over which the conversion of CCl2F2 reached 100 % at 250 °C. CO2 was the main-product and the selectivity to CClF3 remained lower than 28.0 %. CO was not detected as by-product. The decomposition activity depended on the calcination temperature and the ZrO2 content. The activity of solid acid MoO3/ZrO2 correlates well with its specific surface area and the amount of medium-strong acid sites on the surface. To explain the reaction mechanism for CCl2F2 catalytic decomposition over MoO3/ZrO2, a surface intermediate, Osurface-CF2-Osurface is proposed.


Author(s):  
Pablo C. Florido ◽  
Dari´o Delmastro ◽  
Daniel Brasnarof ◽  
Osvaldo E. Azpitarte

Argentina is performing CAREM X Nuclear System Case Study based on CAREM nuclear reactor and Once Through Fuel Cycle, using SIGMA for enriched uranium production, and a deep geological repository for final disposal of high level waste after surface intermediate storage in horizontal natural convection silos, to verify INPRO (International Project on Innovative Nuclear Reactors and Fuel Cycles) methodology. Projections show that developing countries could play a crucial role in the deployment of nuclear energy, in the next fifty years. This case study will be highly useful for checking INPRO methodology for this scenario. In this contribution to ICONE 12, the preliminary findings of the Case Study are presented, including proposals to improve the INPRO methodology.


Sign in / Sign up

Export Citation Format

Share Document