fuel cycles
Recently Published Documents


TOTAL DOCUMENTS

427
(FIVE YEARS 43)

H-INDEX

20
(FIVE YEARS 1)

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 392
Author(s):  
Shuhan Hu ◽  
Hongyuan Chen

Many countries, especially China, have extensively promoted liquefied natural gas (LNG) to replace diesel in heavy-duty vehicles for to achieve sustainable transport aims, including carbon peaks and neutrality. We developed a life-cycle calculation model for environmental load differences covering vehicle and fuel cycles to comprehensively compare the LNG tractor-trailer and its diesel counterpart in China on a full suite of environmental impacts. We found that the LNG tractor-trailer consumes less aluminum but more iron and energy; emits less nitrogen oxide, sulfur oxide, nonmethane volatile organic compounds, and particulate matter but more greenhouse gases (GHG) and carbon monoxide (CO); and causes less abiotic depletion potential, acidification potential, and human toxicity potential impacts but more global warming potential (GWP) and photooxidant creation potential (POCP) impacts. Poor fuel economy was found to largely drive the higher life-cycle GHG and CO emissions and GWP and POCP impacts of the LNG tractor-trailer. Switching to the LNG tractor-trailer could reduce carbon dioxide by 52.73%, GWP impact by 44.60% and POCP impact by 49.23% if it attains parity fuel economy with its diesel counterpart. Policymakers should modify the regulations on fuel tax and vehicle access, which discourage improvement in LNG engine efficiency and adopt incentive polices to develop the technologies.


2022 ◽  
Vol 8 ◽  
pp. 1
Author(s):  
Heddy Barale ◽  
Camille Laguerre ◽  
Paul Sabatini ◽  
Fanny Courtin ◽  
Kévin Tirel ◽  
...  

Scenario simulations are the main tool for studying the impact of a nuclear reactor fleet on the related fuel cycle facilities. This equilibrium preliminary study aims to present the functionalities of a new tool and to show the wide variety of reactors/cycles/strategies that can be studied in steady state conditions and validated with more details thanks to dynamic code. Different types of scenario simulation tools have been developed at CEA over the years, this study focuses on dynamic and equilibrium codes. Dynamic fuel cycle simulation code models the ingoing and outgoing material flow in all the facilities of a nuclear reactor fleet and their evolutions through the different nuclear processes over a given period of time. Equilibrium fuel cycle simulation code models advanced nuclear fuel cycles in equilibrium conditions, i.e. in conditions which stabilize selected nuclear inventories such as spent nuclear fuel constituents, plutonium or some minor actinides. The principle of this work is to analyze different nuclear reactors (PWR, AMR) and several fuel types (UOX, MOX, ERU, MIX) to simulate advanced nuclear fleet with partial and fully plutonium and uranium multi-recycling strategies at equilibrium. At this first stage, selected results are compared with COSI6 simulations in order to evaluate the precision of this new tool, showing a significant general agreement.


2021 ◽  
Vol 13 (22) ◽  
pp. 12643
Author(s):  
Hamid Aït Abderrahim ◽  
Michel Giot

Closing the nuclear fuel cycle and transmuting Minor Actinides (M.As) can be considered as an application of the duty of care principlel principle which says that, “before the final disposal of any waste, any possible chemical and/or physical treatment has to be applied in order to reduce the waste’s toxicity, provided the treatment does not convey unacceptable risks or unacceptable costs”. Forty years of complex research and development has shown that Accelerator Driven Systems could provide a solution to the challenge posed by spent nuclear fuels, by enabling the ability to considerably decrease their radiotoxicity lifetime burden and volume. In particular, a multilateral strategy of treatment of the MAs could be a commendable solution for both the countries phasing out the exploitation of nuclear energy and for those pursuing and developing this exploitation. The pre-industrial assessment of the technical and financial feasibility for industrialization is the next step. This applies to the four R&D and Demonstration building blocks: advanced separation, MAs’ loaded fuel fabrication, dedicated transmuters demonstration (MYRRHA) and provision for MAs’ fuel loaded processing. A global vision of the process leading to a sustainable option is proposed.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4756
Author(s):  
Scott J. Folkman ◽  
Jesús González-Cobos ◽  
Stefano Giancola ◽  
Irene Sánchez-Molina ◽  
José Ramón Galán-Mascarós

Energy production and consumption without the use of fossil fuels are amongst the biggest challenges currently facing humankind and the scientific community. Huge efforts have been invested in creating technologies that enable closed carbon or carbon neutral fuel cycles, limiting CO2 emissions into the atmosphere. Formic acid/formate (FA) has attracted intense interest as a liquid fuel over the last half century, giving rise to a plethora of studies on catalysts for its efficient electrocatalytic oxidation for usage in fuel cells. However, new catalysts and catalytic systems are often difficult to compare because of the variability in conditions and catalyst parameters examined. In this review, we discuss the extensive literature on FA electrooxidation using platinum, palladium and non-platinum group metal-based catalysts, the conditions typically employed in formate electrooxidation and the main electrochemical parameters for the comparison of anodic electrocatalysts to be applied in a FA fuel cell. We focused on the electrocatalytic performance in terms of onset potential and peak current density obtained during cyclic voltammetry measurements and on catalyst stability. Moreover, we handpicked a list of the most relevant examples that can be used for benchmarking and referencing future developments in the field.


2021 ◽  
Vol 9 (2B) ◽  
Author(s):  
Denise Das Mercês Camarano ◽  
Ana Maria Matildes Dos Santos ◽  
Fábio Abud Mansur

The (U,Gd)O2 fuels are used in pressurized water reactors (PWR) to control the neutron population in the reactor during the early life with the purpose of extended fuel cycles and higher target burnups. Nevertheless, the incorporation of Gd2O3 in the UO2 fuel decreases the thermal conductivity, leading to premature fuel degradation. This is the reason for the addition of beryllium oxide (BeO), which has a high thermal conductivity and is chemically compatible with UO2. Pellets were obtained from powder mixtures of the UO2, Gd2O3 and BeO, being the oxide contents of the beryllium equal to 2 and 3wt%, and the gadolinium fixed at 6wt%. The pellets were compacted at 400, 500, 600, and 700 MPa and sintering under hydrogen reducing atmosphere. The purpose of this study was to investigate the effect of BeO, Gd2O3 and compaction pressure on the thermal conductivity of the UO2 pellets. The thermal diffusivity and conductivity of the pellets were determined from 298 K to 773 K and the results obtained were compared to UO2 fuel pellets. The thermal diffusivity was determined by Laser Flash and Thermal Quadrupole methods and the thermal conductivity was calculated from the product of thermal diffusivity, the specific heat capacity and density. The sintered density of the pellets was determined by the xylol penetration and immersion method. The results showed an increase in the thermal conductivity of the pellets with additions of BeO and with the compaction pressure compared to the values obtained with UO2 pellets.


2021 ◽  
Author(s):  
Louise Worrall ◽  
Vlad Henzl ◽  
Alicia Swift ◽  
Nicholas Luciano ◽  
Eric Cervi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document