scholarly journals A comment on the jäger-kačur linearization scheme for strongly nonlinear parabolic equations

1999 ◽  
Vol 44 (6) ◽  
pp. 481-496 ◽  
Author(s):  
Jiří Vala
2016 ◽  
Vol 23 (3) ◽  
pp. 303-321 ◽  
Author(s):  
Youssef Akdim ◽  
Abdelmoujib Benkirane ◽  
Mostafa El Moumni ◽  
Hicham Redwane

AbstractWe study the existence result of a renormalized solution for a class of nonlinear parabolic equations of the form${\partial b(x,u)\over\partial t}-\operatorname{div}(a(x,t,u,\nabla u))+g(x,t,u% ,\nabla u)+H(x,t,\nabla u)=\mu\quad\text{in }\Omega\times(0,T),$where the right-hand side belongs to ${L^{1}(Q_{T})+L^{p^{\prime}}(0,T;W^{-1,p^{\prime}}(\Omega))}$ and ${b(x,u)}$ is unbounded function of u, ${{-}\operatorname{div}(a(x,t,u,\nabla u))}$ is a Leray–Lions type operator with growth ${|\nabla u|^{p-1}}$ in ${\nabla u}$. The critical growth condition on g is with respect to ${\nabla u}$ and there is no growth condition with respect to u, while the function ${H(x,t,\nabla u)}$ grows as ${|\nabla u|^{p-1}}$.


2019 ◽  
Vol 38 (6) ◽  
pp. 99-126
Author(s):  
Abdeslam Talha ◽  
Abdelmoujib Benkirane

In this work, we prove an existence result of entropy solutions in Musielak-Orlicz-Sobolev spaces for a class of nonlinear parabolic equations with two lower order terms and L1-data.


1982 ◽  
Vol 47 (8) ◽  
pp. 2087-2096 ◽  
Author(s):  
Bohumil Bernauer ◽  
Antonín Šimeček ◽  
Jan Vosolsobě

A two dimensional model of a tabular reactor with the catalytically active wall has been proposed in which several exothermic catalytic reactions take place. The derived dimensionless equations enable evaluation of concentration and temperature profiles on the surface of the active component. The resulting nonlinear parabolic equations have been solved by the method of orthogonal collocations.


Author(s):  
Verena Bögelein ◽  
Andreas Heran ◽  
Leah Schätzler ◽  
Thomas Singer

AbstractIn this article we prove a Harnack inequality for non-negative weak solutions to doubly nonlinear parabolic equations of the form $$\begin{aligned} \partial _t u - {{\,\mathrm{div}\,}}{\mathbf {A}}(x,t,u,Du^m) = {{\,\mathrm{div}\,}}F, \end{aligned}$$ ∂ t u - div A ( x , t , u , D u m ) = div F , where the vector field $${\mathbf {A}}$$ A fulfills p-ellipticity and growth conditions. We treat the slow diffusion case in its full range, i.e. all exponents $$m > 0$$ m > 0 and $$p>1$$ p > 1 with $$m(p-1) > 1$$ m ( p - 1 ) > 1 are included in our considerations.


Sign in / Sign up

Export Citation Format

Share Document