Autocrine Signalling Through erbB Receptors Promotes Constitutive Activation of Protein Kinase B/Akt in Breast Cancer Cell Lines

2003 ◽  
Vol 81 (2) ◽  
pp. 117-128 ◽  
Author(s):  
K.M. Nicholson ◽  
C.H. Streuli ◽  
N.G. Anderson
1997 ◽  
Vol 17 (7) ◽  
pp. 3629-3639 ◽  
Author(s):  
H Nakshatri ◽  
P Bhat-Nakshatri ◽  
D A Martin ◽  
R J Goulet ◽  
G W Sledge

Breast cancers often progress from a hormone-dependent, nonmetastatic, antiestrogen-sensitive phenotype to a hormone-independent, antiestrogen- and chemotherapy-resistant phenotype with highly invasive and metastatic growth properties. This progression is usually accompanied by altered function of the estrogen receptor (ER) or outgrowth of ER-negative cancer cells. To understand the molecular mechanisms responsible for metastatic growth of ER-negative breast cancers, the activities of the transcription factor NF-kappaB (which modulates the expression of genes involved in cell proliferation, differentiation, apoptosis, and metastasis) were compared in ER-positive (MCF-7 and T47-D) and ER-negative (MDA-MB-231 and MDA-MB-435) human breast cancer cell lines. NF-kappaB, which is usually maintained in an inactive state by protein-protein interaction with inhibitor IkappaBs, was found to be constitutively active in ER-negative breast cancer cell lines. Constitutive DNA binding of NF-kappaB was also observed with extracts from ER-negative, poorly differentiated primary breast tumors. Progression of the rat mammary carcinoma cell line RM22-F5 from an ER-positive, nonmalignant phenotype (E phenotype) to an ER-negative, malignant phenotype (F phenotype) was also accompanied by constitutive activation of NF-kappaB. Analysis of individual subunits of NF-kappaB revealed that all ER-negative cell lines, including RM22-F5 cells of F phenotype, contain a unique 37-kDa protein which is antigenically related to the RelA subunit. Cell-type-specific differences in IkappaB alpha, -beta, and -gamma were also observed. In transient-transfection experiments, constitutive activity of an NF-kappaB-dependent promoter was observed in MDA-MB-231 and RM22-F5 cells of F phenotype, and this activity was efficiently repressed by cotransfected ER. Since ER inhibits the constitutive as well as inducible activation function of NF-kappaB in a dose-dependent manner, we propose that breast cancers that lack functional ER overexpress NF-kappaB-regulated genes. Furthermore, since recent data indicate that NF-kappaB protects cells from tumor necrosis factor alpha-, ionizing radiation-, and chemotherapeutic agent daunorubicin-mediated apoptosis, our results provide an explanation for chemotherapeutic resistance in ER-negative breast cancers.


2005 ◽  
Vol 16 (7) ◽  
pp. 3117-3127 ◽  
Author(s):  
Rosa A. Cardone ◽  
Anna Bagorda ◽  
Antonia Bellizzi ◽  
Giovanni Busco ◽  
Lorenzo Guerra ◽  
...  

Metastasis results from a sequence of selective events often involving interactions with elements of the tumor-specific physiological microenvironment. The low-serum component of this microenvironment confers increased motility and invasion in breast cancer cells by activating the Na+/H+ exchanger isoform 1 (NHE1). The present study was undertaken to characterize the signal transduction mechanisms underlying this serum deprivation-dependent activation of both the NHE1 and the concomitant invasive characteristics such as leading edge pseudopodia development and penetration of matrigel in breast cancer cell lines representing different stages of metastatic progression. Using pharmacological and genetic manipulation together with transport and kinase activity assays, we observe that the activation of the NHE1 and subsequent invasion by serum deprivation in metastatic human breast cells is coordinated by a sequential RhoA/p160ROCK/p38MAPK signaling pathway gated by direct protein kinase A phosphorylation and inhibition of RhoA. Fluorescence resonance energy transfer imaging of RhoA activity and immunofluorescence analysis of phospho-RhoA and NHE1 show that serum deprivation dynamically remodels the cell, forming long, leading edge pseudopodia and that this signal module is preferentially compartmentalized in these leading edge pseudopodia, suggesting a tight topographic relation of the signaling module to an invasion-specific cell structure.


2014 ◽  
Vol 349 (1) ◽  
pp. 99-106 ◽  
Author(s):  
Elisa Latorre ◽  
Ilaria Castiglioni ◽  
Pamela Gatto ◽  
Stephana Carelli ◽  
Alessandro Quattrone ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document