Mannose: A Potential Selection System for Genetic Transformation of Annatto

2003 ◽  
Vol 46 (3) ◽  
pp. 441-444 ◽  
Author(s):  
V.B. Neto ◽  
C.R. Carvalho ◽  
W.C. Otoni
2007 ◽  
Vol 90 (1) ◽  
pp. 103-109 ◽  
Author(s):  
Hong-Qing Li ◽  
Pei-Jing Kang ◽  
Mei-Lan Li ◽  
Mei-Ru Li

2015 ◽  
Vol 9 (3) ◽  
pp. 46-53 ◽  
Author(s):  
Wilton Mbinda ◽  
Sylvia Nawiri ◽  
Makenzi Nzaro ◽  
Benson Kinyagia ◽  
Allan Mgutu ◽  
...  

In response to increased public concern on antibiotic or herbicide resistance genes usage in genetically modified plants, mannose was evaluated as selectable agent for the genetic transformation of sweetpotato. Nontransformed sweetpotato stem explants of cv. KSP36 were cultured on media containing various combinations and concentrations sucrose and mannose ranging from 0 to 30 g/l. Likewise, efficacy of hygromycin and kanamycin as selection agents for transformation of sweetpotato was evaluated on media containing varying concentrations of antibiotics ranging 0 to 100 mg/l. Selection agent effectiveness was determined by detecting the minimal concentration of the selection agent required to fully inhibit sweetpotato calli growth. Hygromycin was the most effective selection agent as it inhibited cell growth at concentrations above 20 mg/l. Kanamycin was moderately effective as it inhibited cell growth at 60 mg/l. Sweetpotato calli were able to grow and even produce embryos even when mannose was the only source of carbohydrates.DOI: http://dx.doi.org/10.3126/ijls.v9i3.12466 International Journal of Life Sciences 9 (3): 2015; 46-53


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11809
Author(s):  
Richard Dormatey ◽  
Chao Sun ◽  
Kazim Ali ◽  
Sajid Fiaz ◽  
Derong Xu ◽  
...  

Antibiotic and herbicide resistance genes are the most common marker genes for plant transformation to improve crop yield and food quality. However, there is public concern about the use of resistance marker genes in food crops due to the risk of potential gene flow from transgenic plants to compatible weedy relatives, leading to the possible development of “superweeds” and antibiotic resistance. Several selectable marker genes such as aph, nptII, aaC3, aadA, pat, bar, epsp and gat, which have been synthesized to generate transgenic plants by genetic transformation, have shown some limitations. These marker genes, which confer antibiotic or herbicide resistance and are introduced into crops along with economically valuable genes, have three main problems: selective agents have negative effects on plant cell proliferation and differentiation, uncertainty about the environmental effects of many selectable marker genes, and difficulty in performing recurrent transformations with the same selectable marker to pyramid desired genes. Recently, a simple, novel, and affordable method was presented for plant cells to convert non-metabolizable phosphite (Phi) to an important phosphate (Pi) for developing cells by gene expression encoding a phosphite oxidoreductase (PTXD) enzyme. The ptxD gene, in combination with a selection medium containing Phi as the sole phosphorus (P) source, can serve as an effective and efficient system for selecting transformed cells. The selection system adds nutrients to transgenic plants without potential risks to the environment. The ptxD/Phi system has been shown to be a promising transgenic selection system with several advantages in cost and safety compared to other antibiotic-based selection systems. In this review, we have summarized the development of selection markers for genetic transformation and the potential use of the ptxD/Phi scheme as an alternative selection marker system to minimize the future use of antibiotic and herbicide marker genes.


1994 ◽  
Vol 5 (4) ◽  
pp. 551-558 ◽  
Author(s):  
Seok So Chang ◽  
Soon Ki Park ◽  
Byung Chul Kim ◽  
Bong Joong Kang ◽  
Dal Ung Kim ◽  
...  

2000 ◽  
Vol 108 (4) ◽  
pp. 413-419
Author(s):  
Patricia Dupré ◽  
Jerôme Lacoux ◽  
Godfrey Neutelings ◽  
Dominique Mattar-Laurain ◽  
Marc-André Fliniaux ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document