herbicide resistance
Recently Published Documents


TOTAL DOCUMENTS

964
(FIVE YEARS 208)

H-INDEX

68
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Jamal R. Qasem

Two field experiments were conducted to evaluate the effectiveness of 12 herbicides in controlling hairy fleabane [ Conyza bonariensis (L.) Cronquist] in a date palm orchard located in the central Jordan valley during the spring of 2017. Results showed that C. bonariensis resists paraquat (2.5, 5 and 7.5kgha -1 ), oxadiazon (5kgha -1 ) and oxyflourfen (3.3kgha -1 ) herbicides applied at normal or higher than the recommended rates. None of the three herbicides was significantly effective against the weed and treated plants continued growing normally similar to those of untreated control. Higher rates (10-fold of the recommended rates) of the same herbicides failed to control the weed. The effect of other tested herbicides on the weed was varied with bromoxynil plus MCPA (buctril ® M), 2,4-D- iso-octyl ester, glyphosate, glyphosate trimesium and triclopyr were most effective and completely controlled the weed at recommended rates of application. Testing paraquat, oxadiazon and oxyflourfen using the normal recommended and 10-fold higher rates on two populations of C. bonariensis grown from seeds of the date palm and al-Twal (another site in the Jordan Valley) weed populations and grown in pots under glasshouse conditions showed that Date palm population was resistant to the three herbicides at both application rates while al-Twal site population was highly susceptible and completely controlled at normal and high rates of the three herbicides. It is concluded that certain populations of C . bonariensis developed resistance to paraquat, oxadiazon and oxyflourfen but control of this weed was possible using other herbicides of different mechanism of action. Herbicide rotation or other nonchemical weed control methods have been suggested to prevent or reduce the buildup and spread of resistant populations of this weed species. These results represent the first report on herbicide resistance of C. bonariensis in Jordan.


2022 ◽  
Author(s):  
Yanhui Wang ◽  
Heping Han ◽  
Jinyi Chen ◽  
Qin Yu ◽  
Martin Vila‐Aiub ◽  
...  

2021 ◽  
Author(s):  
Sonja Kersten ◽  
Jiyang Chang ◽  
Christian D Huber ◽  
Yoav Voichek ◽  
Christa Lanz ◽  
...  

Repeated herbicide applications exert enormous selection on blackgrass (Alopecurus myosuroides), a major weed in cereal crops of the temperate climate zone including Europe. This inadvertent large-scale experiment gives us the opportunity to look into the underlying genetic mechanisms and evolutionary processes of rapid adaptation, which can occur both through mutations in the direct targets of herbicides and through changes in other, often metabolic, pathways, known as non-target-site resistance. How much either type of adaptation relies on de novo mutations versus pre-existing standing variation is important for developing strategies to manage herbicide resistance. We generated a chromosome-level reference genome for A. myosuroides for population genomic studies of herbicide resistance and genome-wide diversity across Europe in this species. Bulked-segregant analysis evidenced that non-target-site resistance has a complex genetic architecture. Through empirical data and simulations, we showed that, despite its simple genetics, target-site resistance mainly results from standing genetic variation, with only a minor role for de novo mutations.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2725
Author(s):  
Nicholas G. Genna ◽  
Jennifer A. Gourlie ◽  
Judit Barroso

Real-time spot spraying technology has the potential to reduce herbicide costs and slow herbicide resistance. However, few studies exist on the efficacy of this technology in the Pacific Northwest (PNW). This research compared the herbicide efficacy (reduction in weed density and cover) of WEED-IT and WeedSeeker spot spraying systems to uniform spraying in fallow and postharvest in 2019 and 2020. Weed community types included naturally occurring weeds, natural + Russian thistle (Salsola tragus L.), or natural + kochia (Bassia scoparia (L.) A. J. Scott). Herbicides included glyphosate or the pre-mix bromoxynil + pyrasulfotole. Additionally, herbicide efficacy was studied with short stubble (~10 cm), tall stubble (~25 cm), and normal stubble (~20 cm) with chaff and straw removed. In fallow, herbicide efficacy was 1.5 times higher for uniform applications than for WEED-IT or WeedSeeker in 2019 and 2020. Herbicide efficacy was also 1.9 times higher for uniform applications in postharvest in 2019 but no differences were found in 2020. The weed community impacted herbicide efficacy but herbicide efficacy did not differ between residue management treatments. Finally, WEED-IT and WeedSeeker used 53% less herbicide volume in comparison to uniform applications. This research demonstrated that spot spraying technology can be efficacious and economical for growers in the PNW.


2021 ◽  
Author(s):  
Magdy Mahfouz ◽  
Haroon Butt ◽  
Jose Luis Moreno Ramirez

Synthetic directed evolution via localized sequence diversification and the simultaneous application of selection pressure is a promising method for producing new, beneficial alleles that affect traits of interest in diverse species; however, this technique has rarely been applied in plants. Developing systems to induce localized sequence diversification at high efficiency will expand our ability to evolve traits of interest that improve global food security. In this study, we designed, built, and tested a chimeric fusion of T7 RNA Polymerase (RNAP) and deaminase to enable the localized sequence diversification of a target sequence of interest. We tested our T7 RNAP-DNA base editor in Nicotiana benthamiana transient assays to target a transgene expressing GFP under the control of the T7 promoter. More than 7% of C nucleotides were converted to T in long segments of the GFP sequence. We then targeted the T7 promoter-driven ACETOLACTATE SYNTHASE (ALS) sequence that had been stably integrated into the rice (Oryza sativa) genome and generated C-to-T and G-to-A transitions. We used herbicide treatment as a selection pressure for the evolution of the ALS sequence, resulting in the enrichment of herbicide-responsive residues. We then targeted these herbicide-responsive regions in the rice genome using a CRISPR-directed evolution platform and identified herbicide-resistant ALS variants. Thus, our system could be used for the continuous synthetic evolution of gene functions to produce variants with improved herbicide resistance, as well as for other trait engineering applications.


Author(s):  
Candelario Palma-Bautista ◽  
José G. Vázquez-García ◽  
José Alfredo Domínguez-Valenzuela ◽  
Kassio Ferreira Mendes ◽  
Ricardo Alcántara de la Cruz ◽  
...  

Author(s):  
Haiyan Wang ◽  
Bin Liu ◽  
Peng Lei ◽  
Jianchun Zhu ◽  
Le Chen ◽  
...  

2021 ◽  
Vol 74 (1) ◽  
pp. 78-86
Author(s):  
Zachary Ngow ◽  
Trevor K. James ◽  
Christopher E. Buddenhagen

Despite an extensive history of research into herbicide resistance in New Zealand maize, some aspects remain understudied. Herbicide resistance was first detected in New Zealand in the 1980s in maize crops, with atrazine resistance in Chenopodium album L. and Persicaria maculosa Gray. Since then, Chenopodium album has also developed resistance to dicamba, and in the last five years Digitaria sanguinalis (L.) Scop. populations have been reported to be resistant to nicosulfuron. Here we estimate the risk of herbicide resistance arising in 39 common maize weeds. A list of weeds associated with maize was generated, omitting uncommon weeds and those that grow outside of the maize growing season. Weeds were ranked for their risk of evolving herbicide resistance with a scoring protocol that accounts for the specific herbicides used in New Zealand maize. Seven weed species were classified as having a high risk of developing herbicide resistance: Echinochloa crus-galli (L.) P.Beauv., Chenopodium album, Eleusine indica (L.) Gaertn., Xanthium strumarium L., Amaranthus powellii S.Watson, Solanum nigrum L. and Digitaria sanguinalis. Seventeen species were classed as moderate risk, and 15 were low risk. Herbicide classes associated with more resistant species were classed as high risk,these included acetohydroxy acid synthase inhibitors and photosystem-II inhibitors. Synthetic auxins had a  moderate risk but only two herbicides in this class (dicamba and clopyralid) are registered for maize in New Zealand. Other herbicide mode-of-action groups used in maize were low risk. We recommend outreach  to farmers regarding weed-control strategies that prevent high-risk species from developing resistance. High-risk herbicide groups should be monitored for losses of efficacy. Resistance surveys should focus on these species and herbicides.


Author(s):  
Weixiao Liu ◽  
Mei Dong ◽  
Lixia Meng ◽  
Yusong Wan ◽  
Wujun Jin

Abstract Background Widely targeted metabolomics was applied to estimate the differences in the metabolite profiles of maize seeds from 3 natural genotypic varieties and 4 genetically modified (GM) lines. Results Pairwise comparison with their isogenic controls revealed 71, 121, 43 and 95 differentially accumulated metabolites (DAMs) in GM maize seeds of C0030.2.4, C0030.3.5, C0010.1.1 and C0010.3.1, respectively. KEGG pathway enrichment analysis showed that most of these DAMs participated in the biosynthesis of secondary metabolites and purine metabolism in GM maize C0030.2.4 and C0030.3.5, but participated in tryptophan metabolism and 2-oxocarboxylic acid metabolism in C0010.3.1 seeds and in metabolic pathways and the biosynthesis of secondary metabolites in C0010.1.1 seeds. The data also showed that the differences in metabolite accumulation, both total DAMs and co-DAMs, among the different natural genotypic varieties (418 DAMs and 39 co-DAMs) were greater than those caused by genetic modification (330 DAMs and 3 co-DAMs). Conclusions None of the DAMs were identified as new or unintended, showing only changes in abundance in the studied maize seeds. The metabolite profile differences among the 3 non-GM lines were more notable than those among GM lines. Different genetic backgrounds affect metabolite profiling more than gene modification itself. Graphic abstract


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2311
Author(s):  
Barbara Wrzesińska ◽  
Tadeusz Praczyk

Centaurea cyanus, belonging to the Asteraceae family, is an arable weed species encountered mainly in fields with cereals, sugar beet, and maize. The high genetic variability of C. cyanus has been recently reported; however, little is known about its sequence variability in the context of its herbicide resistance. C. cyanus resistance was found mainly against acetolactate synthase (ALS) inhibitors, but no ALS sequence information concerning the herbicide resistance mechanism has been published yet. The aim of this study was to determine the ALS sequences for biotypes susceptible and resistant to tribenuron-methyl in order to identify mutations that may be associated with the resistance emergence. DNA isolation from susceptible and resistant plants was followed by PCR amplification and ALS sequencing. As a result, different lengths of DNA products were obtained. Moreover, both nucleotide and amino acid sequence analysis revealed high sequence variability within one plant as well as between plants from the same biotype. In a few resistant plants, four changes in the amino acid sequence were identified in comparison to those in the susceptible ones. However, these preliminary studies require further investigation toward confirming the significance of these mutations in herbicide resistance development. This study provides preliminary information contributing to the research on the C. cyanus target-site resistance mechanism.


Sign in / Sign up

Export Citation Format

Share Document