Recovery Patterns of Moina Macrocopa Exposed Previously to Different Concentrations of Cadmium and Methyl Parathion: Life-Table Demography and Population Growth Studies

Hydrobiologia ◽  
2004 ◽  
Vol 526 (1) ◽  
pp. 255-265 ◽  
Author(s):  
Ernesto Mangas-Ramírez ◽  
S.S.S. Sarma ◽  
S. Nandini
Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 108 ◽  
Author(s):  
Byju N. Govindan ◽  
William D. Hutchison

Temperature is a critical single factor influencing insect population dynamics, and is foundational for improving our understanding of the phenology of invasive species adapting to new agroecosystems or in the process of range expansion. An age-stage, two-sex life table was therefore developed to analyze fundamental demographic features such as development, survival, and reproduction of a Minnesota-acclimated population of the invasive brown marmorated stink bug (Halyomorpha halys), in the north central USA. All salient life history parameters were estimated to better understand the population growth potential of H. halys at the current limit of its northern range in North America. We examined the effect of selected constant temperatures on immature development and survival (15–39 °C), adult reproduction and longevity (17–36 °C) of H. halys in the laboratory. The Minnesota population developed faster and survived at higher rates relative to a population that had previously established in Pennsylvania, USA. Mean generation time for the Minnesota population was minimized at 30 °C, while survival and fecundity were maximized at 27 and 23 °C, respectively. Given these findings, we assessed the effect of temperature on the intrinsic rate of increase ( r m ), the life table parameter that integrates the effects of temperature on development, survival, and reproduction. A Ratkowsky model predicted r m was maximized (0.0899) at 27.5 °C. We discuss the implications of our findings for understanding population growth rates for H. halys in the context of a warming climate, and potential to emerge as a serious crop pest in the Midwest U.S. region.


2020 ◽  
Vol 193 (3) ◽  
pp. 261-274
Author(s):  
Alfredo Pérez-Morales ◽  
S.S.S. Sarma ◽  
S. Nandini ◽  
Cristian Alberto Espinosa-Rodríguez ◽  
Ligia Rivera-De la Parra

Tropical waterbodies contain several species of toxic cyanobacteria including Microcystis, which adversely affect the somatic growth, survival and fecundity of zooplankton. Scenedesmus, one of the most common green algae, is even found in Microcystis -dominated waterbodies. It is, therefore possible that in natural ponds, rotifers and cladocerans feed on mixed phytoplankton species containing algae and cyanobacteria. In this work, we quantified demographic responses of three rotifer species (Brachionus calyciflorus, B. rubens, and Plationus patulus), and three cladoceran species (Simocephalus mixtus, Daphnia cf. mendotae and Moina macrocopa) fed toxic Microcystis aeruginosa only or mixed with Scenedesmus acutus. The highest population growth for both rotifer and cladoceran species was observed when Scenedesmus was offered alone or at 75 % of the diet. Daphnia cf. mendotae and B. rubens were less affected by Microcystis while M. macrocopa and B. calyciflorus were more adversely influenced, which was also corroborated by life table demography. In competition bioassays, D. cf. mendotae was more efficient, alone or in competition, when fed with 50 or 25 % of Microcystis. This work explains the dynamics of the zooplanktonic community against gradual changes in phytoplankton due to the presence of cyanobacteria.


Insects ◽  
2011 ◽  
Vol 2 (2) ◽  
pp. 173-185 ◽  
Author(s):  
Andrea M. Polanco ◽  
Carlyle C. Brewster ◽  
Dini M. Miller

Sign in / Sign up

Export Citation Format

Share Document