chlorella vulgaris
Recently Published Documents





Fuel ◽  
2022 ◽  
Vol 313 ◽  
pp. 123052
Wai Hong Leong ◽  
Nur Afiqah Mohamad Saman ◽  
Worapon Kiatkittipong ◽  
Suttichai Assabumrungrat ◽  
Vesna Najdanovic-Visak ◽  

2022 ◽  
Vol 304 ◽  
pp. 114187
M. Blosi ◽  
A. Brigliadori ◽  
I. Zanoni ◽  
S. Ortelli ◽  
S. Albonetti ◽  

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262500
Sophie Weber ◽  
Philipp M. Grande ◽  
Lars M. Blank ◽  
Holger Klose

With their ability of CO2 fixation using sunlight as an energy source, algae and especially microalgae are moving into the focus for the production of proteins and other valuable compounds. However, the valorization of algal biomass depends on the effective disruption of the recalcitrant microalgal cell wall. Especially cell walls of Chlorella species proved to be very robust. The wall structures that are responsible for this robustness have been studied less so far. Here, we evaluate different common methods to break up the algal cell wall effectively and measure the success by protein and carbohydrate release. Subsequently, we investigate algal cell wall features playing a role in the wall’s recalcitrance towards disruption. Using different mechanical and chemical technologies, alkali catalyzed hydrolysis of the Chlorella vulgaris cells proved to be especially effective in solubilizing up to 56 wt% protein and 14 wt% carbohydrates of the total biomass. The stepwise degradation of C. vulgaris cell walls using a series of chemicals with increasingly strong conditions revealed that each fraction released different ratios of proteins and carbohydrates. A detailed analysis of the monosaccharide composition of the cell wall extracted in each step identified possible factors for the robustness of the cell wall. In particular, the presence of chitin or chitin-like polymers was indicated by glucosamine found in strong alkali extracts. The presence of highly ordered starch or cellulose was indicated by glucose detected in strong acidic extracts. Our results might help to tailor more specific efforts to disrupt Chlorella cell walls and help to valorize microalgae biomass.

2022 ◽  
Vol 7 (1) ◽  
pp. 115-121
Katarína Kráľová ◽  
Renata Gašparová ◽  
Martin Moncman

A new series of carboxhydrazides 6-8 was synthesized under microwave irradiation by reaction of carboxhydrazide 1 with heterocyclic aldehydes 2-4 in the presence of p-toluenesulfonic acid in ethanol. N-Benzoylcarboxhydrazide 9 was prepared by reaction of 1 with benzoylchlorid 5 in THF at room temperature. The effects of 6-9 on inhibition of photosynthetic electron transport in spinach chloroplasts and chlorophyll content in the antialgal suspensions of Chlorella vulgaris were investigated.

2022 ◽  
Vol 10 (1) ◽  
pp. 145
Munirah F. Aldayel ◽  
Mayyadah A. Al Kuwayti ◽  
Nermin A. H. El Semary

Chlorella vulgaris from Al-Ahsa, KSA was proved to be an active silver and gold nanoparticle producer. Nanogold and nanosilver particles were characterized using UV-visible spectroscopy, Fourier-transform infrared spectroscopy, and scanning electronmicroscopy. Both nanoparticles were used in the antimicrobial bioassay. The two nanoparticles showed antibacterial activities, with the silver nanoparticles being the most effective. To investigate the argumentative nature of their biosynthesis (i.e., whether it is a biotic or abiotic process), we isolated total ribonucleic acid RNA as an indicator of vitality. RNA was completely absent in samples taken after one week of incubation with silver nitrate and even after one or two days. However, successful extraction was only achievable in samples taken after incubation for one and four hours with silver nitrate. Most importantly, the gel image showed recognizable shearing of the nucleic acid after 4 h as compared to the control. An assumption can be drawn that the synthesis of nanoparticles may start biotically by the action of enzyme(s) and abiotically by action of reducing entities. Nonetheless, with prolonged incubation, excessive nanoparticle accumulation can be deadly. Hence, their synthesis continues abiotically. From the RNA banding profile, we suggest that nanosilver production starts both biotically and abiotically in the first few hours of incubation and then continues abiotically. Nanosilver particles proved to have more of an antimicrobial impact than nanogold and hence are recommended for different applications as antibacterial agents.

Sign in / Sign up

Export Citation Format

Share Document