Assessing Cognitive Capacity by P3 During a Complex Manual Control Task

2021 ◽  
Vol 35 (1) ◽  
pp. 43-50
Author(s):  
Bernd Johannes ◽  
Juri A. Bubeev ◽  
Tatyana I. Kotrovskaya ◽  
Sergey V. Bronnikov ◽  
Sarah Piechowski ◽  
...  

Abstract. Our aim was to adapt a classical P3 method to assess the free cognitive capacity during spacecraft docking training in space. Electroencephalogram (EEG) measurement in space is limited by several conditions. Based on experience with our own EEG experiments on MIR and ISS, we decided to use dry electrodes and restricted the electrode placement to the forehead. We examined whether P3 can be reliably obtained under these conditions. Subjects had to perform a manually controlled docking task simultaneously with an acoustic monitory task. The P3 component was evoked by the acoustic stimuli of the secondary task. Twenty-six subjects participated in this study, situated in a space simulation on earth. After a familiarization session, they performed the docking tasks at three difficulty levels: low, medium, and difficult. In the secondary task, subjects had to discriminate between a low (750 Hz) and a high (1,000 Hz) tone, which differed in probability of 90% and 10%, respectively. The subjects had to count the high tone and after 10 relevant tones and had to give a voice command to a power supply configuration. P3 amplitude was largest and the latency shortest during the medium difficult task. A decision matrix based on differences between the relevant and irrelevant P3 was calculated for each subject and each task. The results suggest that P3 can be recorded during a complex manual control task and can be used to assess individual free cognitive capacity.

2011 ◽  
Author(s):  
Yukio Horiguchi ◽  
Keisuke Yasuda ◽  
Hiroaki Nakanishi ◽  
Tetsuo Sawaragi
Keyword(s):  

2018 ◽  
Vol 120 (6) ◽  
pp. 3187-3197 ◽  
Author(s):  
Marissa J. Rosenberg ◽  
Raquel C. Galvan-Garza ◽  
Torin K. Clark ◽  
David P. Sherwood ◽  
Laurence R. Young ◽  
...  

Precise motion control is critical to human survival on Earth and in space. Motion sensation is inherently imprecise, and the functional implications of this imprecision are not well understood. We studied a “vestibular” manual control task in which subjects attempted to keep themselves upright with a rotational hand controller (i.e., joystick) to null out pseudorandom, roll-tilt motion disturbances of their chair in the dark. Our first objective was to study the relationship between intersubject differences in manual control performance and sensory precision, determined by measuring vestibular perceptual thresholds. Our second objective was to examine the influence of altered gravity on manual control performance. Subjects performed the manual control task while supine during short-radius centrifugation, with roll tilts occurring relative to centripetal accelerations of 0.5, 1.0, and 1.33 GC (1 GC = 9.81 m/s2). Roll-tilt vestibular precision was quantified with roll-tilt vestibular direction-recognition perceptual thresholds, the minimum movement that one can reliably distinguish as leftward vs. rightward. A significant intersubject correlation was found between manual control performance (defined as the standard deviation of chair tilt) and thresholds, consistent with sensory imprecision negatively affecting functional precision. Furthermore, compared with 1.0 GC manual control was more precise in 1.33 GC (−18.3%, P = 0.005) and less precise in 0.5 GC (+39.6%, P < 0.001). The decrement in manual control performance observed in 0.5 GC and in subjects with high thresholds suggests potential risk factors for piloting and locomotion, both on Earth and during human exploration missions to the moon (0.16 G) and Mars (0.38 G). NEW & NOTEWORTHY The functional implications of imprecise motion sensation are not well understood. We found a significant correlation between subjects’ vestibular perceptual thresholds and performance in a manual control task (using a joystick to keep their chair upright), consistent with sensory imprecision negatively affecting functional precision. Furthermore, using an altered-gravity centrifuge configuration, we found that manual control precision was improved in “hypergravity” and degraded in “hypogravity.” These results have potential relevance for postural control, aviation, and spaceflight.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1537 ◽  
Author(s):  
Jeehoon Kim ◽  
Jeongsu Lee ◽  
Chungmin Han ◽  
Kwangsuk Park

We developed a new type of electroencephalogram (EEG) headset system with comb-shaped electrodes that enables the wearer to quickly don and utilize it in daily life. Two models that can measure EEG signals using up to eight channels have been implemented. The electrodes implemented in the headsets are similar to a comb and are placed quickly by wiping the hair (as done with a comb) using the headset. To verify this headset system, donning time was measured and three brain computer interface (BCI) application experiments were conducted. Alpha rhythm-based, steady-state visual evoked potential (SSVEP)-based, and auditory steady state response (ASSR)-based BCI systems were adopted for the validation experiments. Four subjects participated and ten trials were repeated in the donning experiment. The results of the validation experiments show that reliable EEG signal measurement is possible immediately after donning the headsets without any preparation. It took approximately 10 s for healthy subjects to don the headsets, including an earclip with reference and ground electrodes. The results of alpha rhythm-based BCI showed 100% accuracy. Furthermore, the results of SSVEP-based and ASSR-based BCI experiments indicate that performance is sufficient for BCI applications; 95.7% and 76.0% accuracies were obtained, respectively. The results of BCI paradigm experiments indicate that the new headset type is feasible for various BCI applications.


1986 ◽  
Vol 30 (7) ◽  
pp. 684-688 ◽  
Author(s):  
K. B. Bennett ◽  
D. D. Woods ◽  
E. M. Roth ◽  
P. H. Haley

The operators of nuclear power plants are asked to perform a task that has proven to be particularly difficult: manual control of feedwater during startup. We have initiated a research and development program to address human factors issues related to this task. An analysis of cognitive aspects of the feedwater control task was used to develop a generic part-task simulator. New displays to enhance manual control performance (including a predictor display) were developed with the simulator. The test capability provided by the simulator allowed precise measurement of performance differences associated with these displays in a mixed-fidelity laboratory experiment. The results suggest that the displays reduced the complexity of the task and resulted in improved operator performance.


Author(s):  
Y. Horiguchi ◽  
K. Yasuda ◽  
H. Nakanishi ◽  
T. Sawaragi
Keyword(s):  

2021 ◽  
Vol 7 (2) ◽  
pp. 159-162
Author(s):  
Roman Kusche ◽  
Jan Graßhoff ◽  
Andra Oltmann ◽  
Lukas Boudnik ◽  
Philipp Rostalski

Abstract EMG is an established method to acquire the action potentials of contracted muscles. Although commercial EMG systems are available and it is one of the most researched biosignals, it has never become widely used in rehabilitation or fitness training monitoring. The reasons are technical challenges of wearable EMG systems regarding electrode placement, motion artefacts and the complex connectivity of multi-channel EMG measurements. We address this problem for the lower back and abdominal musculature, through a novel dry electrodes belt, multi-channel high density EMG circuitry and problem-specific signal processing. The subject can easily strap the dry electrodes belt around himself which provides 16 EMG channels. Interferences from the ECG and motion artefacts are reduced by a stationary wavelet decomposition. Afterwards, an inter-channel filter is applied to increase the robustness of the signals. Subject measurements during different kinds of typical abdominal and lower back training exercises were performed wearing the novel dry electrodes belt. The results show the possibility of robust EMG measurements from the lower back and abdominal muscles by utilizing the gathered redundancy, appropriately. The additional information obtained via the multi-channel EMG circuitry and spatial oversampling can be used to address current problems of EMG applications. It combines the advantages of robustness and the capability of using comfortable dry electrodes. Therefore, the proposed measurement method for acquiring spatial information about the muscle contractions from the lower trunk can be used for rehabilitation or fitness training monitoring.


Author(s):  
D. A. Abbink ◽  
M. Mulder

A promising way to support operators in a manual control task is to provide them with guiding feedback forces on the control device (e.g., the steering wheel). These additional forces can suggest a safe course of action, which operators can follow or over-rule. This paper explores the idea that the feedback forces can be designed not only to depend on a calculated error (i.e., force feedback) but also on the control device position (i.e., stiffness feedback). First, the fundamental properties of force and stiffness feedback are explained, and important parameters for designing beneficial haptic feedback are discussed. Then, in an experiment, the unassisted control of a second-order system (perturbed by a multisine disturbance) is compared with the same control task supported by four haptic feedback systems: weak and strong force feedback, both with and without additional stiffness feedback. Time and frequency-domain analyses are used to understand the changes in human control behavior. The experimental results indicate that—when well designed—stiffness feedback may raise error-rejection performance with the same level of control activity as during unassisted control. The findings may aid in the design of haptic feedback systems for automotive and aerospace applications, where human attention is still required in a visually overloaded environment.


1985 ◽  
Vol 17 (2) ◽  
pp. 101-113 ◽  
Author(s):  
Bruce K. Britton ◽  
Shawn M. Glynn ◽  
K. Denise Muth ◽  
M. J. Penland

It is well established that the provision of instructional objectives before reading a text increases the learning of objective-relevant material in the text. The purpose of the present study was to identify some of the mechanisms by which objectives affect learning. College students studied text under three conditions: with specific objectives, with a general objective, and with no objectives. The objective-relevant material was located either high or low in the content structure of the text. The dependent measures were secondary task reaction time—a measure of cognitive capacity use—reading time, and free recall for objective-relevant material. The results indicated that with specific objectives, the secondary-task reaction times while reading objective-relevant material were longer, reading times were longer, and recall was greater than with either a general objective or with no objectives. Reading times were significantly correlated with recall, but secondary task reaction times were not. In addition, more information was recalled when the objective-relevant material was located high in the text structure. The interpretation of these results is that, with specific objectives, students devote more cognitive capacity to objective-relevant material, spend more time reading it, and recall more of it than when they do not have specific objectives.


Sign in / Sign up

Export Citation Format

Share Document