acoustic stimuli
Recently Published Documents


TOTAL DOCUMENTS

426
(FIVE YEARS 69)

H-INDEX

41
(FIVE YEARS 2)

Author(s):  
Diego Baronio ◽  
Yu-Chia Chen ◽  
Pertti Panula

Monoamine oxidase (MAO) deficiency and imbalanced levels of brain monoamines have been associated with developmental delay, neuropsychiatric disorders and aggressive behavior. Animal models are valuable tools to gain mechanistic insight into outcomes associated with MAO deficiency. Here we report a novel genetic model to study the effects of mao-loss-of-function in zebrafish. Quantitative PCR, in situ hybridization and immunocytochemistry were used to study neurotransmitter systems, and expression of relevant genes for brain development in zebrafish mao mutants. Larval and adult fish behavior was evaluated through different tests. A stronger serotonin immunoreactivity was detected in both mao+/- and mao−/- larvae when compared with mao+/+ siblings. Mao−/- larvae were hypoactive, presented decreased reactions to visual and acoustic stimuli. They also had impaired histaminergic and dopaminergic systems, abnormal expression of developmental markers, and they died within 20 days post-fertilization. Mao+/- fish were viable, grew until adulthood and demonstrated anxiety-like behavior and impaired social interactions when compared with adult mao+/+ siblings. Our results indicate that mao−/- and mao+/- mutants could be promising tools to study the roles of MAO in brain development and behavior.


2021 ◽  
Author(s):  
Nicholas J. Santistevan ◽  
Jessica C. Nelson ◽  
Elelbin A. Ortiz ◽  
Andrew H. Miller ◽  
Dima Kenj Halabi ◽  
...  

AbstractThe ability to filter sensory information into relevant versus irrelevant stimuli is a fundamental, conserved property of the central nervous system and is accomplished in part through habituation learning. Synaptic plasticity that underlies habituation learning has been described at the cellular level, yet the genetic regulators of this plasticity remain poorly understood, as do circuits that mediate sensory filtering. A forward genetic screen for zebrafish genes that control habituation learning identified a mutant allele doryp177 that caused reduced habituation of the acoustic startle response. Whole-genome sequencing identified the calcium voltage-gated channel auxiliary subunit alpha-2/delta-3 (cacna2d3) as a candidate gene affected in doryp177 mutants. Behavioral characterization of larvae homozygous for two additional, independently derived mutant alleles of cacna2d3, together with failure of these alleles to complement doryp177, confirmed a critical role for cacna2d3 in habituation learning. Notably, detailed analyses of the acoustic response in mutant larvae also revealed increased startle sensitivity to acoustic stimuli, suggesting a broader role for cacna2d3 in controlling innate response thresholds to acoustic stimuli. Taken together, our data demonstrate a critical role for cacna2d3 in sensory filtering, a process that is disrupted in human CNS disorders, e.g. ADHD, schizophrenia, and autism.


2021 ◽  
Author(s):  
Kyle Rupp ◽  
Jasmine Leah Hect ◽  
Madison Remick ◽  
Avniel Ghuman ◽  
Bharath Chandresekaran ◽  
...  

The ability to recognize abstract features of voice during auditory perception is a complex, yet poorly understood, feat of human audition. For the listener, this occurs in near-automatic fasion to seamlessly extract complex cues from a highly variable auditory signal. Voice perception depends on specialized regions of auditory cortex, including superior temporal gyrus (STG) and superior temporal sulcus (STS). However, the nature of voice encoding at the cortical level remains poorly understoood. We leverage intracerebral recordings across human auditory cortex during presentation of voice and non-voice acoustic stimuli to examine voice encoding in auditory cortex, in eight patient-participants undergoing epilepsy surgery evaluation. We show that voice-selectivity increases along the auditory hierarchy from supratemporal plane (STP) to the STG and STS. Results show accurate decoding of vocalizations from human auditory cortical activity even in the complete absence of linguistic content. These findings show an early, less-selective temporal window of neural activity in the STG and STS followed by a sustained, strongly voice-selective window. We then developed encoding models that demonstrate divergence in the encoding of acoustic features along the auditory hierarchy, wherein STG/STS responses were best explained by voice category as opposed to the acoustic features of voice stimuli. This is in contrast to neural activity recorded from STP, in which responses were accounted for by acoustic features. These findings support a model of voice perception that engages categorical encoding mechanisms within STG and STS.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Björn Herrmann ◽  
Sonia Yasmin ◽  
Kurdo Araz ◽  
David W. Purcell ◽  
Ingrid S. Johnsrude

AbstractOptimal perception requires adaptation to sounds in the environment. Adaptation involves representing the acoustic stimulation history in neural response patterns, for example, by altering response magnitude or latency as sound-level context changes. Neurons in the auditory brainstem of rodents are sensitive to acoustic stimulation history and sound-level context (often referred to as sensitivity to stimulus statistics), but the degree to which the human brainstem exhibits such neural adaptation is unclear. In six electroencephalography experiments with over 125 participants, we demonstrate that the response latency of the human brainstem is sensitive to the history of acoustic stimulation over a few tens of milliseconds. We further show that human brainstem responses adapt to sound-level context in, at least, the last 44 ms, but that neural sensitivity to sound-level context decreases when the time window over which acoustic stimuli need to be integrated becomes wider. Our study thus provides evidence of adaptation to sound-level context in the human brainstem and of the timescale over which sound-level information affects neural responses to sound. The research delivers an important link to studies on neural adaptation in non-human animals.


Author(s):  
Grace C. Smarsh ◽  
Yifat Tarnovsky ◽  
Yossi Yovel

Little is known about the ontogeny of lingual echolocation. We examined the echolocation development of Rousettus aegyptiacus , the Egyptian fruit bat, which uses rapid tongue movements to produce hyper-short clicks and steer the beam's direction. We recorded from day 0 to day 35 postbirth and assessed hearing and beam-steering abilities. On day 0, R. aegyptiacus pups emit isolation calls and hyper-short clicks in response to acoustic stimuli, demonstrating hearing. Auditory brainstem response recordings show that pups are sensitive to pure tones of the main hearing range of adult Rousettus and to brief clicks. Newborn pups produced clicks in the adult paired pattern and were able to use their tongues to steer the sonar beam. As they aged, pups produced click pairs faster, converging with adult intervals by age of first flights (7–8 weeks). In contrast with laryngeal bats, Rousettus echolocation frequency and duration are stable through to day 35, but shift by the time pups begin to fly, possibly owing to tongue-diet maturation effects. Furthermore, frequency and duration shift in the opposite direction of mammalian laryngeal vocalizations. Rousettus lingual echolocation thus appears to be a highly functional sensory system from birth and follows a different ontogeny from that of laryngeal bats.


Author(s):  
Pamela Papile Lunardelo ◽  
Marisa Tomoe Hebihara Fukuda ◽  
Patricia Aparecida Zuanetti ◽  
Ângela Cristina Pontes-Fernandes ◽  
Marita Iannazzo Ferretti ◽  
...  

2021 ◽  
Vol 17 (9) ◽  
Author(s):  
Tiago Monteiro ◽  
Tom Hart ◽  
Alex Kacelnik

Filial imprinting is a dedicated learning process that lacks explicit reinforcement. The phenomenon itself is narrowly heritably canalized, but its content, the representation of the parental object, reflects the circumstances of the newborn. Imprinting has recently been shown to be even more subtle and complex than previously envisaged, since ducklings and chicks are now known to select and represent for later generalization abstract conceptual properties of the objects they perceive as neonates, including movement pattern, heterogeneity and inter-component relationships of same or different. Here, we investigate day-old Mallard ( Anas platyrhynchos ) ducklings’ bias towards imprinting on acoustic stimuli made from mallards’ vocalizations as opposed to white noise, whether they imprint on the temporal structure of brief acoustic stimuli of either kind, and whether they generalize timing information across the two sounds. Our data are consistent with a strong innate preference for natural sounds, but do not reliably establish sensitivity to temporal relations. This fits with the view that imprinting includes the establishment of representations of both primary percepts and selective abstract properties of their early perceptual input, meshing together genetically transmitted prior pre-dispositions with active selection and processing of the perceptual input.


2021 ◽  
Vol 13 (3) ◽  
pp. 520-529
Author(s):  
Sara Cavaliere ◽  
Giovanna Bertini ◽  
Cesarina Cossu ◽  
Maria Bastianelli ◽  
Simonetta Gabbanini ◽  
...  

Data in the literature report that latency and morphology in the cutaneous sympathetic skin response (SSR) do not change according to the type of stimulus delivered, unlike the amplitude which shows greater values in relation to the intensity of the physical impact caused in patient. Since the acoustic stimulus represents a method better tolerated by the pediatric patient, the aim of this study is to evaluate the presence or absence of significant differences in SSR between electrical and acoustic stimuli. The SSR was performed for each child of 18 recruited in this study, deriving from the palm of the hand and the sole of the foot and initially delivering an electrical stimulus at the level of the median nerve at the wrist. Two acoustic stimuli were subsequently delivered with the aid of audiometric headphones. Our results show no significant differences for the amplitude values obtained (p values > 0.05). For the latency there was a statistically significant difference (p-value = 0.001) for the left hand, subsequently not confirmed by the comparison performed between the two sides (p-values = 0.28 and 0.56). If these preliminary data are confirmed by a larger sample, the acoustic stimulus could be introduced in a standardized protocol for performing SSR in pediatric patients.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Daniel J. Fehring ◽  
Ranshikha Samandra ◽  
Zakia Z. Haque ◽  
Shapour Jaberzadeh ◽  
Marcello Rosa ◽  
...  

AbstractContext-dependent execution or inhibition of a response is an important aspect of executive control, which is impaired in neuropsychological and addiction disorders. Transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC) has been considered a remedial approach to address deficits in response control; however, considerable variability has been observed in tDCS effects. These variabilities might be related to contextual differences such as background visual-auditory stimuli or subjects' sex. In this study, we examined the interaction of two contextual factors, participants' sex and background acoustic stimuli, in modulating the effects of tDCS on response inhibition and execution. In a sham-controlled and cross-over (repeated-measure) design, 73 participants (37 females) performed a Stop-Signal Task in different background acoustic conditions before and after tDCS (anodal or sham) was applied over the DLPFC. Participants had to execute a speeded response in Go trials but inhibit their response in Stop trials. Participants' sex was fully counterbalanced across all experimental conditions (acoustic and tDCS). We found significant practice-related learning that appeared as changes in indices of response inhibition (stop-signal reaction time and percentage of successful inhibition) and action execution (response time and percentage correct). The tDCS and acoustic stimuli interactively influenced practice-related changes in response inhibition and these effects were uniformly seen in both males and females. However, the effects of tDCS on response execution (percentage of correct responses) were sex-dependent in that practice-related changes diminished in females but heightened in males. Our findings indicate that participants' sex influenced the effects of tDCS on the execution, but not inhibition, of responses.


2021 ◽  
Vol 263 (2) ◽  
pp. 4913-4918
Author(s):  
Anna Schwendicke ◽  
M. Ercan Altinsoy

Humans perceive whole-body vibration in many daily life situations. Often they are exposed to whole-body vibration in combination with acoustic events. Sound and vibration usually stems from the same source, for example concerts or travelling in vehicles, such as automobile, aircrafts, or ships. While we can describe acoustic stimuli using psychoacoustic descriptors such as loudness or timbre, the description human perception of whole body vibration frequently has been reduced to comfort or quality in the past. Unlike loudness or timbre, comfort and quality are dependent on the overall context. Especially in vehicles expectations might differ lot between different vehicle classes. Previous studies have evaluated a large range of suitable descriptors for whole-body vibrations that are independent of context. They suggest that certain descriptors are driven to a large extend by the frequency content of the vibration. This study systematically investigates the influence of frequency content on the perception of whole-body vibration varying frequency content and intensity of the vibrations. The results verify the frequency dependence of specific descriptors and identify the respective frequency ranges.


Sign in / Sign up

Export Citation Format

Share Document