scholarly journals Can new particle formation occur in the clean marine boundary layer?

2000 ◽  
Vol 105 (D21) ◽  
pp. 26531-26546 ◽  
Author(s):  
Liisa Pirjola ◽  
Colin D. O'Dowd ◽  
Ian M. Brooks ◽  
Markku Kulmala
1992 ◽  
Vol 97 (D18) ◽  
pp. 20581 ◽  
Author(s):  
David S. Covert ◽  
Vladimir N. Kapustin ◽  
Patricia K. Quinn ◽  
Timothy S. Bates

2006 ◽  
Vol 6 (4) ◽  
pp. 7323-7368 ◽  
Author(s):  
D. V. Spracklen ◽  
K. S. Carslaw ◽  
M. Kulmala ◽  
V.-M. Kerminen ◽  
G. W. Mann ◽  
...  

Abstract. The contribution of boundary layer nucleation events to total particle concentrations on the global scale has been studied by including a new particle formation mechanism in a global aerosol microphysics model. The mechanism is based on an analysis of extensive observations of particle formation in the boundary layer at a continental surface site. It assumes that molecular clusters form at a rate proportional to the gaseous sulfuric acid concentration to the power of 1. The formation rate of 3 nm diameter observable particles is controlled by the cluster formation rate and the existing particle surface area, which acts to scavenge condensable gases and clusters during growth. Modelled sulfuric acid vapour concentrations, particle formation rates, growth rates, coagulation loss rates, peak particle concentrations, and the daily timing of events in the global model agree well with observations made during a 22-day period of March 2003 at the SMEAR II station in Hyytiälä, Finland. The nucleation bursts produce total particle concentrations (>3 nm diameter) often exceeding 104 cm−3, which are sustained for a period of several hours around local midday. The predicted global distribution of particle formation events broadly agrees with what is expected from available observations. Over relatively clean remote continental locations formation events can sustain mean total particle concentrations up to a factor of 8 greater than those resulting from anthropogenic sources of primary organic and black carbon particles. However, in polluted continental regions anthropogenic primary particles dominate particle number and formation events lead to smaller enhancements of up to a factor of 2. Our results therefore suggest that particle concentrations in remote continental are dominated by nucleated particles while concentrations in polluted continental regions are dominated by primary particles. The effect of boundary layer particle formation over tropical regions and the Amazon is negligible. Particle concentrations are enhanced by a factor 3–10 over the remote Southern Ocean (30–70° S), resulting in total concentrations of ~250–1000 cm−3, in good agreement with observations. Particle formation tends to peak towards the top of the marine boundary layer and there is a lack of obvious burst-like behaviour at the sea surface. This result suggests that new particle formation in the marine boundary layer could be confused with entrainment from the free troposphere. These first global particle formation simulations reveal some interesting sensitivities. We show, for example, that significant reductions in primary particle emissions may lead to an increase in total particle concentration because of the coupling between particle surface area and the rate of new particle formation. This result suggests that changes in emissions may have a complicated effect on global and regional aerosol properties. Overall, our results show that new particle formation is a significant component of the aerosol particle number budget.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guangjie Zheng ◽  
Yang Wang ◽  
Robert Wood ◽  
Michael P. Jensen ◽  
Chongai Kuang ◽  
...  

AbstractMarine low clouds play an important role in the climate system, and their properties are sensitive to cloud condensation nuclei concentrations. While new particle formation represents a major source of cloud condensation nuclei globally, the prevailing view is that new particle formation rarely occurs in remote marine boundary layer over open oceans. Here we present evidence of the regular and frequent occurrence of new particle formation in the upper part of remote marine boundary layer following cold front passages. The new particle formation is facilitated by a combination of efficient removal of existing particles by precipitation, cold air temperatures, vertical transport of reactive gases from the ocean surface, and high actinic fluxes in a broken cloud field. The newly formed particles subsequently grow and contribute substantially to cloud condensation nuclei in the remote marine boundary layer and thereby impact marine low clouds.


2007 ◽  
Vol 7 (3) ◽  
pp. 7535-7567
Author(s):  
J. Lauros ◽  
E. D. Nilsson ◽  
M. Dal Maso ◽  
M. Kulmala

Abstract. The connection between new particle formation and micro- and mesoscale meteorology was studied based on measurements at SMEAR II station in Southern Finland. We analyzed turbulent conditions described by sodar measurements and utilized these combined with surface layer measurements and a simple model to estimate the upper boundary layer conditions. Turbulence was significantly stronger on particle formation days and the organic vapor saturation ratio increase due to large eddies was stronger on event than nonevent days. We examined which variables could be the best indicators of new particle formation and concluded that the formation probability depended on the condensation sink and temporal temperature change at the top of the atmospheric boundary layer. Humidity and heat flux may also be good indicators for particle formation.


Sign in / Sign up

Export Citation Format

Share Document