scholarly journals Population index flood method for regional frequency analysis

2001 ◽  
Vol 37 (11) ◽  
pp. 2733-2748 ◽  
Author(s):  
Oli G. B. Sveinsson ◽  
Duane C. Boes ◽  
Jose D. Salas
2020 ◽  
Author(s):  
Younghun Jung ◽  
Kyungwon Joo ◽  
JoonHak Lee ◽  
Jun-Haeng Heo

<p>Climate change has emerged as one of the defining issues of the early 21st century. Recent research confirms that the imprint of human induced climate change can be recognized in current accident events. There is a high probability of observed trends, such as increases in heat waves and heavy extreme rainfall events, intensifying over the 21st century. Extreme weather and climate events are anticipated to generate significant risks to societies and ecosystem. This paper focuses on estimation rainfall quantile using sclaling model for short duration IDF curve in North Korea. It is very important to manage the flood control facilities because of increasing the frequency and magnitude of severe rain storms. For managing flood control facilities in possibly hazardous regions, data sets such as elevation, gradient, channel, land use and soil data should be filed up. Using this information, the disaster situations can be simulated to secure evacuation routes for various rainfall scenarios. The aim of this study is to investigate and determine extreme rainfall quantile estimates in North Korea Cities using index flood method with L-moments parameter estimation. Regional frequency analysis trades space for time by using annual maximum rainfall data from nearby or similar sites to determine estimates for any given site in a homogeneous region. Regional frequency analysis based on pooled data is recommended for estimation of rainfall quantiles at sites with record lengths less than 5T, where T is return period of interest. Many variables relevant to precipitation can be used for grouping a region in regional frequency analysis. For regionalization of Han River basin, the k-means method is applied for grouping regions using variables of meteorology and geomorphology. The results from the k-means method are compared for each region using various probability distributions. In the final step of the regionalization analysis, goodness-of-fit measure is used to evaluate the accuracy of a set of candidate distributions. And rainfall quantiles by index flood method are obtained based on the appropriate distribution(GEV and GLO). Therefore, it could be possible to estimate rainfall quantiles using scale invariance and frequency analysis for Wonsan, Jangjeon, and Pyeonggang rainfall stations in North Korea. And then, rainfall quantiles based on various scenarios are used as input data for disaster simulations.</p><p>Acknowledgements</p><p>This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2019R1A2C2010854).</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document