Decadal-scale variability of upper ocean heat content in the tropical Pacific

2003 ◽  
Vol 30 (6) ◽  
Author(s):  
Takuya Hasegawa ◽  
Kimio Hanawa
2020 ◽  
Author(s):  
Yue Wang ◽  
Zhimin Jian ◽  
Haowen Dang ◽  
Zhongfang Liu ◽  
Haiyan Jin ◽  
...  

<p>The ocean is the largest heat capacitor of the earth climate system and a main source of atmospheric moist static energy. Especially, upper ocean heat content changes in the tropics can be taken as the heat engine of global climate. Here we provide an orbital scale perspective on changes in OHC obtained from a transient simulation of the Community Earth System Model under orbital insolation and GHG forcings. Considering the vertical stratification of the upper ocean, we calculate OHC for the mixed layer and the upper thermocline layer according to the isotherm depths of 26℃ and 20℃ respectively. Generally, our simulated OHC are dominated by thickness changes rather than temperature changes of each layer. In details, there are three situations according to different forcings:</p><p>(1) Higher GHG induces positive mixed layer OHC anomalies inside the western Pacific warm pool but with neglected anomalies outside it. For the upper thermocline layer, there are negative OHC anomalies inside the warm pool and positive anomalies in the subtropical Pacific of two hemispheres. For the total OHC above 20℃ isotherm depth, positive anomalies mainly come from the mixed layer between 15ºS-15ºN and from the thermocline between 15º-30º. Lower obliquity induces similar spatial patterns of OHC anomalies as those of higher GHG, but total OHC anomalies are more contributed by upper thermocline anomalies.</p><p>(2) Lower precession results in positive mixed layer OHC anomalies in the core of warm pool (150ºE-150ºW, 20ºS-10ºN) and the subtropical northeastern Pacific, but with negative anomalies in other regions of the tropical Pacific. Upper thermocline layer OHC anomalies have similar patterns but with opposite signs relative to the mixed layer in regions between 15ºN-30ºS. As a combination, positive total OHC anomalies occupy large areas of 130ºE-120ºW from 30ºS to10ºN, while negative anomalies dominate the subtropical north Pacific, the western and eastern ends of the tropical Pacific.</p><p>If confirmed by paleoceanographic proxies, our simulated OHC results can be served as the first guide map of anomalous energetic storage & flows in the earth climate system under orbital forcings.</p>


2017 ◽  
Vol 74 (2) ◽  
pp. 219-238 ◽  
Author(s):  
Junqiao Feng ◽  
Fei-fei Jin ◽  
Dunxin Hu ◽  
Shoude Guan

2013 ◽  
Vol 43 (10) ◽  
pp. 2230-2244 ◽  
Author(s):  
Shenfu Dong ◽  
Kathryn A. Kelly

Abstract Formation and the subsequent evolution of the subtropical mode water (STMW) involve various dynamic and thermodynamic processes. Proper representation of mode water variability and contributions from various processes in climate models is important in order to predict future climate change under changing forcings. The North Atlantic STMW, often referred to as Eighteen Degree Water (EDW), in three coupled models, both with data assimilation [GFDL coupled data assimilation (GFDL CDA)] and without data assimilation [GFDL Climate Model, version 2.1 (GFDL CM2.1), and NCAR Community Climate System Model, version 3 (CCSM3)], is analyzed to evaluate how well EDW processes are simulated in those models and to examine whether data assimilation alters the model response to forcing. In comparison with estimates from observations, the data-assimilating model gives a better representation of the formation rate, the spatial distribution of EDW, and its thickness, with the largest EDW variability along the Gulf Stream (GS) path. The EDW formation rate in GFDL CM2.1 is very weak because of weak heat loss from the ocean in the model. Unlike the observed dominant southward movement of the EDW, the EDW in GFDL CM2.1 and CCSM3 moves eastward after formation in the excessively wide GS in the models. However, the GFDL CDA does not capture the observed thermal response of the overlying atmosphere to the ocean. Observations show a robust anticorrelation between the upper-ocean heat content and air–sea heat flux, with upper-ocean heat content leading air–sea heat flux by a few months. This anticorrelation is well captured by GFDL CM2.1 and CCSM3 but not by GFDL CDA. Only GFDL CM2.1 captures the observed anticorrelation between the upper-ocean heat content and EDW volume. This suggests that, although data assimilation corrects the readily observed variables, it degrades the model thermodynamic response to forcing.


Sign in / Sign up

Export Citation Format

Share Document