scholarly journals The sensitivity of the present-day Atlantic meridional overturning circulation to freshwater forcing

2003 ◽  
Vol 30 (17) ◽  
pp. n/a-n/a ◽  
Author(s):  
O. H. Otterå ◽  
H. Drange ◽  
M. Bentsen ◽  
N. G. Kvamstø ◽  
D. Jiang
2020 ◽  
Vol 50 (9) ◽  
pp. 2561-2572
Author(s):  
Fabian Schloesser

AbstractNorth Atlantic meridional density gradients have been identified as a main driver of the Atlantic meridional overturning circulation (AMOC). Due to the cabbeling effect, these density gradients are increasingly dominated by temperature gradients in a warming ocean, and a direct link exists between North Atlantic mean temperature and AMOC strength. This paper quantifies the impact of this mechanism in the Stommel and Gnanadesikan models. Owing to different feedback mechanisms being included, a 1°C warming of North Atlantic mean ocean temperature strengthens the AMOC by 3% in the Gnanadesikan model and 8% in the Stommel model. In the Gnanadesikan model that increase is equivalent to a 4% strengthening of Southern Hemisphere winds and can compensate for a 14% increase in the hydrological cycle. Furthermore, mean temperature strongly controls a freshwater forcing threshold for the strong AMOC state, suggesting that the cabbeling effect needs to be considered to explain past and future AMOC variability.


2008 ◽  
Vol 21 (11) ◽  
pp. 2697-2710 ◽  
Author(s):  
J. Paul Spence ◽  
Michael Eby ◽  
Andrew J. Weaver

Abstract The effect of increasing horizontal resolution is examined to assess the response of the Atlantic meridional overturning circulation (AMOC) to freshwater perturbations. Versions of a global climate model with horizontal resolutions ranging from 1.8° (latitude) × 3.6° (longitude) to 0.2° × 0.4° are used to determine if the AMOC response to freshwater forcing is robust to increasing resolution. In the preindustrial equilibrium climate, the representation of western boundary currents and meridional heat transport are improved with resolution. Freshwater forcings similar to the final drainage of proglacial Lakes Agassiz and Ojibway are applied evenly over the Labrador Sea and exclusively along the western boundary. The duration and maximum amplitude of model responses to freshwater forcing showed little sensitivity to increasing resolution. An evaluation with tracers of the forcing impact on different regions of North Atlantic Deep Water formation revealed the possibility that increases in Labrador Sea deep convection at higher resolution mitigate the effect of stronger boundary currents and enhanced mixing. With increasing resolution, there is less cooling in the subpolar west Atlantic, more cooling in the subpolar east Atlantic, and greater variability in the deep ocean response to the boundary forcing. While differences exist, the coarse-resolution model response remains robust at finer horizontal resolutions.


2015 ◽  
Vol 45 (7) ◽  
pp. 1929-1946 ◽  
Author(s):  
Sandy Grégorio ◽  
Thierry Penduff ◽  
Guillaume Sérazin ◽  
Jean-Marc Molines ◽  
Bernard Barnier ◽  
...  

AbstractThe low-frequency variability of the Atlantic meridional overturning circulation (AMOC) is investigated from 2, ¼°, and ° global ocean–sea ice simulations, with a specific focus on its internally generated (i.e., “intrinsic”) component. A 327-yr climatological ¼° simulation, driven by a repeated seasonal cycle (i.e., a forcing devoid of interannual time scales), is shown to spontaneously generate a significant fraction R of the interannual-to-decadal AMOC variance obtained in a 50-yr “fully forced” hindcast (with reanalyzed atmospheric forcing including interannual time scales). This intrinsic variance fraction R slightly depends on whether AMOCs are computed in geopotential or density coordinates, and on the period considered in the climatological simulation, but the following features are quite robust when mesoscale eddies are simulated (at both ¼° and ° resolutions); R barely exceeds 5%–10% in the subpolar gyre but reaches 30%–50% at 34°S, up to 20%–40% near 25°N, and 40%–60% near the Gulf Stream. About 25% of the meridional heat transport interannual variability is attributed to intrinsic processes at 34°S and near the Gulf Stream. Fourier and wavelet spectra, built from the 327-yr ¼° climatological simulation, further indicate that spectral peaks of intrinsic AMOC variability (i) are found at specific frequencies ranging from interannual to multidecadal, (ii) often extend over the whole meridional scale of gyres, (iii) stochastically change throughout these 327 yr, and (iv) sometimes match the spectral peaks found in the fully forced hindcast in the North Atlantic. Intrinsic AMOC variability is also detected at multidecadal time scales, with a marked meridional coherence between 35°S and 25°N (15–30 yr periods) and throughout the whole basin (50–90-yr periods).


Sign in / Sign up

Export Citation Format

Share Document