Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25 Myr: Constraints from geochemistry

2006 ◽  
Vol 7 (8) ◽  
pp. n/a-n/a ◽  
Author(s):  
Takeshi Hanyu ◽  
Yoshiyuki Tatsumi ◽  
Shun'ichi Nakai ◽  
Qing Chang ◽  
Takashi Miyazaki ◽  
...  
2011 ◽  
Vol 108 (20) ◽  
pp. 8177-8182 ◽  
Author(s):  
K. Mibe ◽  
T. Kawamoto ◽  
K. N. Matsukage ◽  
Y. Fei ◽  
S. Ono

2006 ◽  
Vol 70 (18) ◽  
pp. A229 ◽  
Author(s):  
T. Hanyu ◽  
Y. Tatsumi ◽  
S. Nakai ◽  
Q. Chang ◽  
T. Miyazaki ◽  
...  

2007 ◽  
Vol 44 (11) ◽  
pp. 1517-1535 ◽  
Author(s):  
C Manikyamba ◽  
R Kerrich ◽  
Tarun C Khanna ◽  
D V Subba Rao

Adakite and rhyolite volcanic flows with different petrographic and geochemical characteristics have been identified from the Neoarchaean Gadwal greenstone terrane of the eastern Dharwar craton, India. These are part of the bimodal basalt–felsic association that dominates the belt, which includes previously documented boninites and Nb-enriched basalts. Adakites plot in the MgO–SiO2 field of Cenozoic adakites, distinct from high-Mg andesites, and have low Yb (1.2 ppm) and fractionated rare-earth elements (REE) (La/Ybn = 16) of Cenozoic counterparts. They also possess the Cr/Ni (1.3–4.0), Nb/Ta (8.6–12.8), and Zr/Sm (33–58) ratios distinctive of adakites from recent oceanic arcs. Zero to positive Eu anomalies contrast with negative Eu present in older Dharwar cratonic crust, such that crustal contamination is unlikely, endorsing an intraoceanic setting. Cenozoic oceanic adakites may form by slab melting, then hybridizing to variable degree with wedge peridotite, and Gadwal adakites are also interpreted to be slab melts. Rhyolites have greater SiO2, highly incompatible elements (Th, La, Zr), and higher Yb (2.41 ppm) contents than adakites, with fractionated REE and pronounced negative Eu anomalies; they are comparable to FI type rhyolites of other Archean greenstone belts, likely melts of thick mafic crust at ~40 km with residual garnet, in an extensional setting. Consequently, the switch from arc basalts and boninites to adakites, Nb-enriched basalt, and rhyolites in the Gadwal terrane signifies a transition from slab dehydration-wedge melting to slab melting-wedge hybridization, possibly triggered by ridge subduction or flattening of the slab, as well as crustal melting. These new observations endorse the emergence of complex arc magmatism in Neoarchean terranes.


Author(s):  
M. S. Drummond ◽  
M. J. Defant ◽  
P. K. Kepezhinskas

ABSTRACT:The prospect of partial melting of the subducted oceanic crust to produce arc magmatism has been debated for over 30 years. Debate has centred on the physical conditions of slab melting and the lack of a definitive, unambiguous geochemical signature and petrogenetic process. Experimental partial melting data for basalt over a wide range of pressures (1–32 kbar) and temperatures (700–1150°C) have shown that melt compositions are primarily trondhjemite–tonalite–dacite (TTD). High-Al (> 15% Al2O3 at the 70% SiO2 level) TTD melts are produced by high-pressure (≥ 5 kbar) partial melting of basalt, leaving a restite assemblage of garnet + clinopyroxene ± hornblende. A specific Cenozoic high-Al TTD (adakite) contains lower Y, Yb and Sc and higher Sr, Sr/Y, La/Yb and.Zr/Sm relative to other TTD types and is interpreted to represent a slab melt under garnet amphibolite to eclogite conditions. High-Al TTD with an adakite-like geochemical character is prevalent in the Archean as the result of a higher geotherm that facilitated slab melting. Cenozoic adakite localities are commonly associated with the subduction of young (<25 Ma), hot oceanic crust, which may provide a slab geotherm (≍9–10°C km−1) conducive for slab dehydration melting. Viable alternative or supporting tectonic effects that may enhance slab melting include highly oblique convergence and resultant high shear stresses and incipient subduction into a pristine hot mantle wedge. The minimum P–T conditions for slab melting are interpreted to be 22–26 kbar (75–85 km depth) and 750–800°C. This P–T regime is framed by the hornblende dehydration, 10°C/km, and wet basalt melting curves and coincides with numerous potential slab dehydration reactions, such as tremolite, biotite + quartz, serpentine, talc, Mg-chloritoid, paragonite, clinohumite and talc + phengite. Involvement of overthickened (>50 km) lower continental crust either via direct partial melting or as a contaminant in typical mantle wedge-derived arc magmas has been presented as an alternative to slab melting. However, the intermediate to felsic volcanic and plutonic rocks that involve the lower crust are more highly potassic, enriched in large ion lithophile elements and elevated in Sr isotopic values relative to Cenozoic adakites. Slab-derived adakites, on the other hand, ascend into and react with the mantle wedge and become progressively enriched in MgO, Cr and Ni while retaining their slab melt geochemical signature. Our studies in northern Kamchatka, Russia provide an excellent case example for adakite-mantle interaction and a rare glimpse of trapped slab melt veinlets in Na-metasomatised mantle xenoliths.


Geology ◽  
2000 ◽  
Vol 28 (6) ◽  
pp. 535-538 ◽  
Author(s):  
Marc-André Gutscher ◽  
René Maury ◽  
Jean-Philippe Eissen ◽  
Erwan Bourdon
Keyword(s):  

2006 ◽  
Vol 48 (3) ◽  
pp. 537-562 ◽  
Author(s):  
A. Gomez-Tuena ◽  
C. H. Langmuir ◽  
S. L. Goldstein ◽  
S. M. Straub ◽  
F. Ortega-Gutierrez

Sign in / Sign up

Export Citation Format

Share Document