Fine-scale ultralow-velocity zone structure from high-frequency seismic array data

Author(s):  
Sebastian Rost ◽  
Edward J. Garnero ◽  
Quentin Williams
2021 ◽  
Vol 40 (10) ◽  
pp. 759-767
Author(s):  
Rolf H. Baardman ◽  
Rob F. Hegge

Machine learning (ML) has proven its value in the seismic industry with successful implementations in areas of seismic interpretation such as fault and salt dome detection and velocity picking. The field of seismic processing research also is shifting toward ML applications in areas such as tomography, demultiple, and interpolation. Here, a supervised ML deblending algorithm is illustrated on a dispersed source array (DSA) data example in which both high- and low-frequency vibrators were deployed simultaneously. Training data pairs of blended and corresponding unblended data were constructed from conventional (unblended) data from another survey. From this training data, the method can automatically learn a deblending operator that is used to deblend for both the low- and the high-frequency vibrators of the DSA data. The results obtained on the DSA data are encouraging and show that the ML deblending method can offer a good performing, less user-intensive alternative to existing deblending methods.


1971 ◽  
Vol 61 (4) ◽  
pp. 993-1008
Author(s):  
F. M. Anglin

abstract Detection statistics from a search of 99 days of Yellowknife Array data have been obtained. The mean 50 and 90 per cent cumulative detection levels are found to be m 3.9 and m 4.2 for the third zone from Yellowknife. Regional variations in the detection levels have been found. The 50 per cent cumulative detection level ranges from m 3.8 for Asia to m 4.3 for the Aleutians. Regional values of the slopes of the recurrence curves for log N versus magnitude have been obtained, the mean slope for the third zone from Yellowknife being −0.99.


Author(s):  
Xavier Flores-Vidal ◽  
Reginaldo Durazo ◽  
Rubén Castro ◽  
Luis F. Navarro ◽  
Feliciano Dominguez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document