scholarly journals Anthropogenic CO2accumulation rates in the North Atlantic Ocean from changes in the13C/12C of dissolved inorganic carbon

2007 ◽  
Vol 21 (1) ◽  
Author(s):  
P. Quay ◽  
R. Sonnerup ◽  
J. Stutsman ◽  
J. Maurer ◽  
A. Körtzinger ◽  
...  
2011 ◽  
Vol 8 (6) ◽  
pp. 12451-12476 ◽  
Author(s):  
N. R. Bates

Abstract. Natural climate variability impacts the multi-decadal uptake of anthropogenic carbon dioxide (Cant) into the North Atlantic Ocean subpolar and subtropical gyres. Previous studies have shown that there is significant uptake of CO2 into the subtropical mode water (STMW) that forms south of the Gulf Stream in winter and constitutes the dominant upper-ocean water mass in the subtropical gyre of the North Atlantic Ocean. Observations at the Bermuda Atlantic Time-series Study (BATS) site near Bermuda show an increase in dissolved inorganic carbon (DIC) of +1.51 ± 0.08 μmol kg−1 yr−1 between 1988 and 2011. It is estimated that the sink of CO2 into STMW was 0.985 ± 0.018 Pg C (Pg = 1015 g C) between 1988 and 2011 (~70 % of which is due to uptake of Cant). However, the STMW sink of CO2 was strongly coupled to the North Atlantic Oscillation (NAO) with large uptake of CO2 into STMW during the 1990s (NAO positive phase). In contrast, uptake of CO2 into STMW was much reduced in the 2000s during the NAO neutral/negative phase. Thus, NAO induced variability of the STMW CO2 sink is important when evaluating multi-decadal changes in North Atlantic Ocean CO2 sinks.


2012 ◽  
Vol 9 (7) ◽  
pp. 2649-2659 ◽  
Author(s):  
N. R. Bates

Abstract. Natural climate variability impacts the multi-decadal uptake of anthropogenic carbon dioxide (Cant) into the North Atlantic Ocean subpolar and subtropical gyres. Previous studies have shown that there is significant uptake of CO2 into subtropical mode water (STMW) of the North Atlantic. STMW forms south of the Gulf Stream in winter and constitutes the dominant upper-ocean water mass in the subtropical gyre of the North Atlantic Ocean. Observations at the Bermuda Atlantic Time-series Study (BATS) site near Bermuda show an increase in dissolved inorganic carbon (DIC) of +1.51 ± 0.08 μmol kg−1 yr−1 between 1988 and 2011, but also an increase in ocean acidification indicators such as pH at rates (−0.0022 ± 0.0002 yr−1) higher than the surface ocean (Bates et al., 2012). It is estimated that the sink of CO2 into STMW was 0.985 ± 0.018 Pg C (Pg = 1015 g C) between 1988 and 2011 (70 ± 1.8% of which is due to uptake of Cant). The sink of CO2 into the STMW is 20% of the CO2 uptake in the North Atlantic Ocean between 14°–50° N (Takahashi et al., 2009). However, the STMW sink of CO2 was strongly coupled to the North Atlantic Oscillation (NAO), with large uptake of CO2 into STMW during the 1990s during a predominantly NAO positive phase. In contrast, uptake of CO2 into STMW was much reduced in the 2000s during the NAO neutral/negative phase. Thus, NAO induced variability of the STMW CO2 sink is important when evaluating multi-decadal changes in North Atlantic Ocean CO2 sinks.


2018 ◽  
Vol 612 ◽  
pp. 1141-1148 ◽  
Author(s):  
Min Zhang ◽  
Yuanling Zhang ◽  
Qi Shu ◽  
Chang Zhao ◽  
Gang Wang ◽  
...  

2021 ◽  
Vol 56 (7-8) ◽  
pp. 2027-2056
Author(s):  
Sandra M. Plecha ◽  
Pedro M. M. Soares ◽  
Susana M. Silva-Fernandes ◽  
William Cabos

Eos ◽  
1986 ◽  
Vol 67 (44) ◽  
pp. 835 ◽  
Author(s):  
W. E. Esaias ◽  
G. C. Feldman ◽  
C. R. McClain ◽  
J. A. Elrod

2014 ◽  
Vol 31 (6) ◽  
pp. 1434-1445 ◽  
Author(s):  
Federico Ienna ◽  
Young-Heon Jo ◽  
Xiao-Hai Yan

Abstract Subsurface coherent vortices in the North Atlantic, whose saline water originates from the Mediterranean Sea and which are known as Mediterranean eddies (meddies), have been of particular interest to physical oceanographers since their discovery, especially for their salt and heat transport properties into the North Atlantic Ocean. Many studies in the past have been successful in observing and studying the typical properties of meddies by probing them with in situ techniques. The use of remote sensing techniques would offer a much cheaper and easier alternative for studying these phenomena, but only a few past studies have been able to study meddies by remote sensing, and a reliable method for observing them remotely remains elusive. This research presents a new way of locating and tracking meddies in the North Atlantic Ocean using satellite altimeter data. The method presented in this research makes use of ensemble empirical mode decomposition (EEMD) as a means to isolate the surface expressions of meddies on the ocean surface and separates them from any other surface constituents, allowing robust meddies to be consistently tracked by satellite. One such meddy is successfully tracked over a 6-month time period (2 November 2005 to 17 May 2006). Results of the satellite tracking method are verified using expendable bathythermographs (XBT).


Sign in / Sign up

Export Citation Format

Share Document