Rheology of concentrated granular suspensions and possible implications for debris flow modeling

2009 ◽  
Vol 45 (3) ◽  
Author(s):  
Rosanna Sosio ◽  
Giovanni B. Crosta
2007 ◽  
pp. 59-77 ◽  
Author(s):  
Tamotsu Takahashi
Keyword(s):  

1996 ◽  
Vol 8 (1) ◽  
pp. 1-35 ◽  
Author(s):  
K. Hutter ◽  
B. Svendson ◽  
D. Rickenmann

Author(s):  
Florian Frank ◽  
Brian W. McArdell ◽  
Nicole Oggier ◽  
Patrick Baer ◽  
Marc Christen ◽  
...  

Abstract. Debris flow volumes can increase due to the incorporation of sediment into the flow as a consequence of channel-bed erosion along the flow path. This study describes a sensitivity analysis of the recently-introduced RAMMS debris flow entrainment algorithm which is intended to help solve problems related to predicting the runout of debris flows. The entrainment algorithm predicts the depth and rate of erosion as a function of basal shear stress based on an analysis of erosion measurements at the Illgraben catchment, Switzerland (Frank et al., 2015). Starting with a landslide-type initiation in the RAMMS model, the volume of entrained sediment was calculated for recent well-documented debris-flow events at the Bondasca and the Meretschibach catchments, Switzerland. The sensitivity to the initial landslide volume was investigated by systematically varying the initial landslide volume and comparing the resulting debris-flow volume with estimates from the field sites. In both cases, the friction coefficients in the RAMMS runout model were calibrated using the model where the entrainment module was inactivated. The results indicate that the entrainment model predicts plausible erosion volumes in comparison with field data. By including bulking due to entrainment in runout models, more realistic runout patterns are predicted in comparison to starting the model with the entire debris-flow volume (initial landslide plus entrained sediment). In particular, lateral bank overflow – not observed during this event – is prevented when using the sediment entrainment model, even in very steep (≈ 60–65 %) and narrow (4–6 m) torrent channels. Predicted sediment entrainment volumes are sensitive to the initial landslide volume, suggesting that the model may be useful for both reconstruction of historical events as well as the modeling of scenarios as part of a hazard analysis.


2019 ◽  
Vol 100 (1) ◽  
pp. 329-343 ◽  
Author(s):  
Priscilla Addison ◽  
Thomas Oommen

1994 ◽  
Vol 8 (1) ◽  
pp. 1-35 ◽  
Author(s):  
K. Hutter ◽  
B. Svendsen ◽  
D. Rickenmann
Keyword(s):  

2013 ◽  
pp. 573-578 ◽  
Author(s):  
Jošt Sodnik ◽  
Tomaž Podobnikar ◽  
Urška Petje ◽  
Matjaž Mikoš

Sign in / Sign up

Export Citation Format

Share Document