Interactive comment on “Debris flow modeling at Meretschibach and Bondasca catchments, Switzerland: sensitivity testing of field data-based erosion model” by F. Frank, B.W. McArdell, N. Oggier, P. Baer, M. Christen and A. Vieli

Author(s):  
Florian Frank
Author(s):  
Florian Frank ◽  
Brian W. McArdell ◽  
Nicole Oggier ◽  
Patrick Baer ◽  
Marc Christen ◽  
...  

Abstract. Debris flow volumes can increase due to the incorporation of sediment into the flow as a consequence of channel-bed erosion along the flow path. This study describes a sensitivity analysis of the recently-introduced RAMMS debris flow entrainment algorithm which is intended to help solve problems related to predicting the runout of debris flows. The entrainment algorithm predicts the depth and rate of erosion as a function of basal shear stress based on an analysis of erosion measurements at the Illgraben catchment, Switzerland (Frank et al., 2015). Starting with a landslide-type initiation in the RAMMS model, the volume of entrained sediment was calculated for recent well-documented debris-flow events at the Bondasca and the Meretschibach catchments, Switzerland. The sensitivity to the initial landslide volume was investigated by systematically varying the initial landslide volume and comparing the resulting debris-flow volume with estimates from the field sites. In both cases, the friction coefficients in the RAMMS runout model were calibrated using the model where the entrainment module was inactivated. The results indicate that the entrainment model predicts plausible erosion volumes in comparison with field data. By including bulking due to entrainment in runout models, more realistic runout patterns are predicted in comparison to starting the model with the entire debris-flow volume (initial landslide plus entrained sediment). In particular, lateral bank overflow – not observed during this event – is prevented when using the sediment entrainment model, even in very steep (≈ 60–65 %) and narrow (4–6 m) torrent channels. Predicted sediment entrainment volumes are sensitive to the initial landslide volume, suggesting that the model may be useful for both reconstruction of historical events as well as the modeling of scenarios as part of a hazard analysis.


2015 ◽  
Vol 3 (4) ◽  
pp. 2379-2417 ◽  
Author(s):  
F. Frank ◽  
B. W. McArdell ◽  
C. Huggel ◽  
A. Vieli

Abstract. This study describes an investigation of channel-bed erosion of sediment by debris flows. An erosion model, developed using field data from debris flows at the Illgraben catchment, Switzerland, was incorporated into the existing RAMMS debris-flow model, which solves the 2-D shallow-water equations for granular flows. In the erosion model, the relationship between maximum shear stress and measured erosion is used to determine the maximum potential erosion depth. Additionally, the maximum rate of erosion, measured at the same field site, is used to constrain the erosion rate. The model predicts plausible erosion values in comparison with field data from highly erosive debris flow events at the Spreitgraben torrent channel, Switzerland in 2010, without any adjustment to the coefficients in the erosion model. We find that by including channel erosion in runout models a more realistic flow pattern is produced than in simulations where entrainment is not included. In detail, simulations without channel bed erosion show more lateral outflow from the channel where it has not been observed in the field. Therefore the erosion model may be especially useful for practical applications such as hazard analysis and mapping, as well as scientific case studies of erosive debris flows.


2017 ◽  
Vol 17 (5) ◽  
pp. 801-815 ◽  
Author(s):  
Florian Frank ◽  
Brian W. McArdell ◽  
Nicole Oggier ◽  
Patrick Baer ◽  
Marc Christen ◽  
...  

Abstract. Debris-flow volumes can increase due to the incorporation of sediment into the flow as a consequence of channel-bed erosion along the flow path. This study describes a sensitivity analysis of the recently introduced RAMMS (Rapid Mass Movements) debris-flow entrainment model, which is intended to help solve problems related to predicting the runout of debris flows. The entrainment algorithm predicts the depth and rate of erosion as a function of basal shear stress based on an analysis of erosion measurements at the Illgraben catchment, Switzerland (Frank et al., 2015). Starting with a landslide-type initiation in the RAMMS model, the volume of entrained sediment was calculated for recent well-documented debris-flow events at the Bondasca and the Meretschibach catchments, Switzerland. The sensitivity to the initial landslide volume was investigated by systematically varying the initial landslide volume and comparing the resulting debris-flow volume with estimates from the field sites. In both cases, the friction coefficients in the RAMMS runout model were calibrated using the model, whereby the entrainment module was (1) inactivated to find plausible values for general flow properties by adjusting both coefficients (ξ and μ) and then (2) activated to further refine coefficient μ, which controls erosion (patterns). The results indicate that the model predicts plausible erosion volumes in comparison with field data. By including bulking due to entrainment in runout models, more realistic runout patterns are predicted in comparison to starting the model with the entire debris-flow volume (initial landslide plus entrained sediment). In particular, lateral bank overflow – not observed during these events – is prevented when using the sediment entrainment model, even in very steep (≈ 60–65 %) and narrow (4–6 m) torrent channels. Predicted sediment entrainment volumes are sensitive to the initial landslide volume, suggesting that the model may be useful for both reconstruction of historical events and the modeling of scenarios as part of a hazard analysis.


2015 ◽  
Vol 15 (11) ◽  
pp. 2569-2583 ◽  
Author(s):  
F. Frank ◽  
B. W. McArdell ◽  
C. Huggel ◽  
A. Vieli

Abstract. This study describes an investigation of channel-bed entrainment of sediment by debris flows. An entrainment model, developed using field data from debris flows at the Illgraben catchment, Switzerland, was incorporated into the existing RAMMS debris-flow model, which solves the 2-D shallow-water equations for granular flows. In the entrainment model, an empirical relationship between maximum shear stress and measured erosion is used to determine the maximum potential erosion depth. Additionally, the average rate of erosion, measured at the same field site, is used to constrain the erosion rate. The model predicts plausible erosion values in comparison with field data from highly erosive debris flow events at the Spreitgraben torrent channel, Switzerland in 2010, without any adjustment to the coefficients in the entrainment model. We find that by including bulking due to entrainment (e.g., by channel erosion) in runout models a more realistic flow pattern is produced than in simulations where entrainment is not included. In detail, simulations without entrainment show more lateral outflow from the channel where it has not been observed in the field. Therefore the entrainment model may be especially useful for practical applications such as hazard analysis and mapping, as well as scientific case studies of erosive debris flows.


2016 ◽  
Vol 57 (71) ◽  
pp. 29-40 ◽  
Author(s):  
Evan S. Miles ◽  
Francesca Pellicciotti ◽  
Ian C. Willis ◽  
Jakob F. Steiner ◽  
Pascal Buri ◽  
...  

AbstractSupraglacial ponds on debris-covered glaciers present a mechanism of atmosphere/glacier energy transfer that is poorly studied, and only conceptually included in mass-balance studies of debris-covered glaciers. This research advances previous efforts to develop a model of mass and energy balance for supraglacial ponds by applying a free-convection approach to account for energy exchanges at the subaqueous bare-ice surfaces. We develop the model using field data from a pond on Lirung Glacier, Nepal, that was monitored during the 2013 and 2014 monsoon periods. Sensitivity testing is performed for several key parameters, and alternative melt algorithms are compared with the model. The pond acts as a significant recipient of energy for the glacier system, and actively participates in the glacier’s hydrologic system during the monsoon. Melt rates are 2-4 cm d-1 (total of 98.5 m3 over the study period) for bare ice in contact with the pond, and <1 mmd-1 (total of 10.6m3) for the saturated debris zone. The majority of absorbed atmospheric energy leaves the pond system through englacial conduits, delivering sufficient energy to melt 2612 m3 additional ice over the study period (38.4 m3 d-1). Such melting might be expected to lead to subsidence of the glacier surface. Supraglacial ponds efficiently convey atmospheric energy to the glacier’s interior and rapidly promote the downwasting process.


1996 ◽  
Vol 8 (1) ◽  
pp. 1-35 ◽  
Author(s):  
K. Hutter ◽  
B. Svendson ◽  
D. Rickenmann

2020 ◽  
Author(s):  
Seungjun Lee ◽  
Hyunuk An ◽  
Minseok Kim

&lt;p&gt;The shallow landslide-generated debris flow on hillside catchment plays a critical role in the change of landscape features caused by natural hazards. Numerous studies has been conducted on the analysis of the transported and deposited sediments by debris flows that were developed at the hillside catchments. Among these researches, the debris flow numerical modeling approach has an advantage of being able to predict and simulate the movement of the flow over irregular topographic terrains. A number of modeling approaches have been studied to explore the process of debris flow development. However, there are still a lot of uncertainties in the erosion-entrainment process, although several erosion models have been proposed to simulate debris flow. The objective of this study is to test and analyze several erosion models for debris flow simulation. Deb2D model, a two-dimensional debris flow simulation software based on quadtree-grid, is used to simulate the debris flow. The study case was 2011 Mt. Umyeon landslide in the Republic of Korea. The total debris flow volume, maximum velocity and inundated depth generated from Deb2D were compared with the field validation data. In particular, the spatial distribution of erosion depth was extracted from the LiDAR-based DEM data gauged before and after the event to compare the performance of the erosion model. The research showed each erosion model accuracy and shortcomings through comparison with field validation data.&lt;/p&gt;&lt;p&gt;Keywords : debris flow, numerical simulation, entrainment, erosion model, Deb2D&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document